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Automatically finds “leopards” in CIFAR100 training set!



Supervised learning in deep learning

Train and test set from same distribution
• Low generalization error
• High train accuracy -> high test accuracy



Noisy labels negative impact performance!

• Noisy labels arise from web supervision, mechanical turk...

• High generalization error
• High train accuracy -> low test accuracy

• What if the train distribution has noisy labels?

Overfit to noisy labels



Challenges for Image Classification

• Deep neural networks can overfit noisy labels easily
• Noisy labels are common in practice

• web supervision, mechanical turk...

• Lack of domain-specific knowledge about noisy labels
• e.g. % of labels are noisy, or noise transition matrix 

Can we identify noisy labels under these restrictions?

Yes!



Our Approach

Step 1: identify noisy labels under these restrictions

Step 2: remove identified examples

Step 3: train with remaining examples

Result: simple approach that with SOTA performance!
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Step 1: entropy-based assumption

Assumption: noisy labels have higher conditional entropy

Intuition: labeling sources have different opinions

“entropy of clean labels” < “entropy of noisy labels”
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Step 1: noisy labels -> higher loss

Assumption: noisy labels have higher conditional entropy

Intuition: labeling sources have different opinions

“entropy of clean labels” < “entropy of noisy labels”

Cross entropy loss = KL divergence + Entropy

When KL = 0, noisy labels will have higher loss!



Step 1: uniform noisy labels

But we know almost nothing about noisy labels!

What if the dataset contains uniform noisy labels?

X -> Uniform(Y)

Uniform noisy labels -> high entropy -> high loss!
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Step 1: a simplified case

The loss values of uniform noisy labels
• (when trained on ResNets with large learning rates)
• almost does not decrease / depend on the amount
• and can be estimated with the model parameters!

Let us consider an easier, counterfactual situation:
• Only source of noisy labels in dataset is Uniform(Y).
• Can we identify these labels (regardless of %)?

Yes!



Step 1: simulate loss distribution

The loss values of uniform noisy labels
• almost does not decrease / depend on the amount
• and can be estimated with the model parameters!

How to simulate?

fc = last fully connected layer



Step 1: validate our claims

Setup: CIFAR-100, 20% / 40% of noise, lr = 0.1
• Only source of noisy labels in dataset is Uniform(Y).

Observations: loss distribution for uniform labels 
• is very different from that of normal labels
• are similar, regardless of percentage (20%, 40%)
• and can be estimated with the model parameters!



Step 1: uniform case -> practical cases

In practice

How about non uniform noise?

• 0% percent uniform noise
• Estimate “high loss” regions based on model parameters
• If an example has “high loss”, then it is probably noisy!

1. Uniform noisy labels -> high entropy -> high loss!
2. Uniform loss distribution does not depend on %



Step 1: validate the proposed method

Example: identify CIFAR-100 “noisy” labels in train set

Automatically find clearly mislabeled examples in CIFAR-100!  

Mislabeled “leopards” (most are tigers and panthers)
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Step 2: remove identified examples (why)

Why? Reweighting does not entirely prevent overfitting .

• Decision boundary does not change much from weighting!

• Weighted by 10:1, 1:1, 1:10 (figure from Byrd and Lipton, 2019)



Step 2: remove identified examples (when)

When? Remove samples when learning rate is still high.

• Too early: clean labels are not properly learned
• Too late: small learning rate, overfits noisy labels



Step 2: remove identified examples (what)

What? Remove samples with loss larger than p-th quantile

• Aggressive threshold: risk removing more clean examples
• Weak threshold: risk keeping more noisy examples
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Overview of On-the-fly Data Denoising

At epoch E (large learning rate)



Experiments

Datasets
• CIFAR-10, CIFAR-100, ImageNet (clean)
• WebVision, Clothing1M (noisy)

Noise
• Artificial (uniform, non-homogenous)
• Natural (inherent in dataset)

Our method (ODD) 
• achieves SOTA-level performance
• has virtually no computational overhead



CIFAR-10 and CIFAR-100

Uniform label noise (0%, 20%, 40%)



WebVision / ImageNet

• 1000 classes, 2M images labeled with web supervision



Clothing1M

• 14 classes, containing 50k clean and 1M noisy images



Summary

Problem: dataset contains labels that are incorrect / noisy
Solution: implicit regularization helps find noisy examples!
Advantages:
• Virtually no computational overhead
• Does not require prior knowledge of noise
• State-of-the-art performance

Automatically finds “leopards” in CIFAR100 training set!
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