numpy.std()

TL;DR: Always use higher precision when using numpy.std().

I was working on rewriting my code and found some problems with numpy when using the std function, where the result with dtype=np.float32 is drastically different from dtype=np.float64. (Double precision float gives the correct result while single precision does not)

See the following example:

import numpy as np
a = np.random.normal(0.0, 500.0, [10000000, 2])
print('float64: {}'.format(np.std(a, axis=0)))
print('float32: {}'.format(np.std(a, axis=0, dtype=np.float32)))

float64: [ 500.17523373  500.04088655]
float32: [ 496.34017944  496.21456909]


Here we can see that even if the standard deviation should be 500, it was 496 when using float32. Numpy actually knows this (in their docs):

For floating-point input, the std is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Weirdly enough, if we use a data with shape [10000000 * 2] instead of [10000000, 2], then this will not have issues:

a = np.random.normal(0.0, 500.0, [10000000 * 2])
print('float64: {}'.format(np.std(a)))
print('float32: {}'.format(np.std(a, dtype=np.float32)))

float64: 499.9830404637898
float32: 499.9829406738281


If we calculate std on each axis manually, no issues occur as well:

print('float64: [{}, {}]'.format(np.std(a[:, 0], axis=0), np.std(a[:, 1], axis=0)))
print('float32: [{}, {}]'.format(np.std(a[:, 0], axis=0, dtype=np.float32), np.std(a[:, 1], axis=0, dtype=np.float32)))

float64: [500.1752337287789, 500.04088654730464]
float32: [500.1752624511719, 500.04095458984375]


So there is really no reason why std for float32 in the first case fails. Nevertheless, this happens and we should use float64 in all cases.