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Abstract

Arti�cial intelligence and machine learning methods have seen tremendous advances in the past
decade, thanks to deep neural networks. Supervised learning methods enables neural networks to
e�ectively approximate low-level functions of human intelligence, such as identifying an object
within an image. However, many complex functions of human intelligence are di�cult to solve with
supervised learning directly: humans can build concise representations of the world (compression),
generate works of art based on creative imaginations (generation), and infer how others will act
from personal experiences (inference).

In this dissertation, we focus on machine learning approaches that reduce these complex
functions of human intelligence into simpler ones that can be readily solved with supervised
learning and thus enabling us to leverage the developments in deep learning. This dissertation
comprises of three parts, namely compression, generation, and inference.

The �rst part discusses how we can apply supervised learning to unsupervised representation
learning. We develop algorithms that can learn informative representations from large unlabeled
datasets while protecting certain sensitive attributes. The second part extends these ideas to
learning high-dimensional probabilistic models of unlabeled data. Combined with the insights
from the �rst part, we introduce a generative model suitable for conditional generation under
limited supervision. In the third and �nal part, we present two applications of supervised learning
in probabilistic inference methods: (a) optimizing for e�cient Bayesian inference algorithms and
(b) inferring the agents’ intent under complex, multi-agent environments. These contributions
enable machines to overcome existing limitations of supervised learning in real-world compression,
generation, and inference problems.
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Chapter 1

Introduction

Deep function approximators, such as neural networks, are highly successful in supervised learning;
given abundant labels that are directly provided by humans, neural networks can learn to map
training data to the corresponding labels [HZRS16, SHM+16]. However, this learning paradigm
does not suit complex algorithms that describe more sophisticated intelligent behaviors; these
include algorithms for e�ective compression of data, algorithms that synthesize novel data, and
algorithms that infer the reward models of human drivers. These algorithms are di�cult to solve
with direct supervised learning, since the acquisition of “ground-truth” labels (e.g., compressed
representation of a data point, realism of a synthesized sample, reward of a driving trajectory)
is either too expensive to acquire in mass quantities or challenging to de�ne even for domain
experts [Zho18, Bar89, Gha03, HTF09].

The goal of this dissertation is to build machines that learn these complex algorithms with min-
imal direct supervision from humans. In particular, we discuss three key problems in unsupervised
machine learning that are instances of the tasks1:

Compression (Figure 1.1a) : How can we extract compact and informative representations of
the data that are useful for downstream goals (e.g., accuracy, privacy, fairness)? These
representations can vastly reduce the need for labeled data in a new task.

Generation (Figure 1.1b) : How can we learn powerful generative models that capture complex,
multi-modal distributions from data samples (e.g. images, videos, demonstrations)? These
models can be used to manipulate existing data, evaluate test data, or synthesize new samples.

1We provide a detailed account of these tasks in Chapter 2.

1
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Inference (Figure 1.1c) : How can we e�ciently infer crucial latent variables (or factors) from
existing observations (e.g. sample e�ciency, reward functions)? The inferred latent variables
can be used to optimize certain algorithms (e.g., a Markovian policy) to a desired state (e.g.,
an instance of the Markov chain Monte Carlo sampler, or a policy for autonomous driving).

Data Representations IntePosterior Samples

(a) Compression. (b) Generation.

Interactions Intentions

“unsafe”

“safe”

Posterior Samples

(c) Inference.

Figure 1.1: Overview of the dissertation topic.

In this dissertation, we apply supervised learning to compression, generation, and inference. We
adopt ideas from information theory [BA03], probabilistic inference [Lev18], and physics [N+11]
that reduces these di�cult problems into simpler ones that can be solved with supervised learning
with minimal human supervision. Methods that are discussed in this dissertation can compress
neural networks by 60% yet achieving better accuracy (Chapter 4, [SE20b]), perform realistic image
manipulation 100× faster than state-of-the-art methods such as StyleGAN2 (Chapter 8, [SSME21]),
reduce wall-clock time of probabilistic inference algorithms by more than 90% (Chapter 9, [SZE17]),
and reduce the number of crashes of autonomous driving agents by 50% to 70% (Chapter 10,
[SRSE18]), illustrating their e�ectiveness in concrete applications.

1.1 Overview

1.1.1 Compression via Supervised Learning

Representation learning is a fundamental problem in machine learning, which processes raw data
into structured representations that are easier to understand. While representations can be learned
via direct supervised learning (e.g., from inputs to labels), labeled data can be much more expensive
and di�cult to acquire than unlabeled ones [HFW+19]. As a result, methods based on unsupervised
learning can be more promising, since it allows the use of large amounts of unlabeled data to
boost performance on downstream tasks and alleviate the use of labels [MSC+13, DCLT18, MK13,
RNSS18, BMR+20]. Ideally, these representations should retain information about real-world data
as much as possible, useful for downstream applications (e.g., linear classi�cation) and su�ciently
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Which is similar?

or

Teach about “quality”

(a) InfoMax via classi�cation.

Variance

Bi
as

Impossible

Lower bounds w/
high confidence

[28]

[21]

(b) MI estimation.

Fairness

Ut
ilit

y

User-specified
 fairness level

Learn most useful
representation [12]

(c) Fair representation learning.

Figure 1.2: Compression via Supervised Learning. (a) InfoMax is a simple principle for rep-
resentation learning but hard to apply in practice since mutual information is hard to estimate
from samples. (b) We found that unbiased estimators have very high variance and proposed a
practical high-con�dence lower bound estimator with low bias; (c) We �nd the most informative
representations under fairness constraints with alternative notions of information.

concise (i.e., compressed). Given our goal of learning concise and useful representations of the data,
we will use the term “compression” for representation learning.

Mutual information estimation for representation learning Information Maximization (In-
foMax, [BS95]) is a fundamental principle for learning representations from vast amounts of
unlabeled data, where the (Shannon) mutual information (MI), a measurement of mutual depen-
dence, is maximized between the observations and learned representations (Figure 1.2a). As mutual
information is di�cult to measure directly from samples, the InfoMax principle can be instantiated
by “supervised learning”: given the observations, we can learn a classi�er to measure mutual infor-
mation, which can then be used to learn better representations. However, accurately estimating
mutual information remains a challenging problem, and it is unclear whether the estimated mutual
information learning in unsupervised representation learning are accurate enough to re�ect the
actual amount of “information” that is learned.

Many existing methods maximize unbiased estimators of mutual information lower bounds. In
Chapter 3, I showed that these may not apply well in practical scenarios because of exponentially
high variances [SE20c]. I proposed a multi-label classi�cation approach [SE20b] that balances the
bias-variance trade-o� and outperforms existing state-of-the-art methods in terms of compressing
neural networks and learning compact representations of high-dimensional data.

Fair representation learning Large datasets are often collected with certain biases against
minority groups [Naj20], and our models may inherit such biases without careful design. This
motivates our project in fair representation learning, which we detail in Chapter 5. As an example,
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suppose that we wish to distribute a dataset (e.g., hospital diagnostics) to a downstream vendor
(hospital or research institute), but we do not wish to leak certain sensitive information about
the patients (e.g., gender or ethnicity). This requires us to process the dataset (i.e., obtain a
representation) that is su�ciently informative but also protects against the sensitive attributes that
we care about. In fair representation learning, we often wish to learn informative representations
while limiting the “unfairness” of the representations. To this end, we introduce the �rst framework
of controllable fair representation learning [SKG+18] (Figure 1.2c), where owners of a dataset with
certain sensitive attributes (e.g., gender) can prevent compute-constrained downstream users from
exploiting these attributes and making unfair decisions.

1.1.2 Generation via Supervised Learning

Generative models trained on large amounts of unlabeled data have achieved great success in
various domains including images [BDS18, KLA+20, ROV19, HJA20], text [LGL+20, AABS19],
audio [DJP+20, PPZS20, vdODZ+16, MEHS21], and graphs [GZE19, NSS+20]. These models are
designed to model high-dimensional probability distributions that can be highly complex and rich
in modalities. Unlike direct supervised learning which models a conditional distribution – typically
from a complex input to a less complex output – a generative model may learn from unlabeled
data, and thus does not necessarily have complex input modalities. This makes it challenging to
train complex, multi-modal generative models despite the amazing success in deep learning for
supervised learning. In this dissertation, I discuss how we can leverage advances in supervised
learning to improve generative models.

Reweighted examples for generative models In supervised learning, one common objective
function is to perform reweighting over samples. For example, one can assign higher weights
to data points that are harder, which encourages the model to learn these harder examples. In
contrast, if the dataset is assumed to contain labels that do not re�ect the ground truth (i.e., labels
gathered from crowdsourcing or web-supervision), then we might be inclined to assign lower
weights to examples that might be incorrect in the �rst place. In [SE20a], I leveraged a similar idea
in learning generative adversarial networks, where we assign higher weights to examples that
appear more realistic (Figure 1.3a); this simple approach has been shown to consistently improve
the performance of state-of-the-art generative adversarial networks with negligible computational
overhead.
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Label 1

Label 0

43[Song and Ermon, ICML-20]

Good
(50%)

Fair 
(40%)

Poor 
(10%)

Increase the weights for the better samples!

(a) Improved supervised learning with reweighted labels. (b) Improved supervised learn-
ing with “negative” data.

Figure 1.3: Supervised learning for generative models. Generative models can bene�t from
advances in how the “supervised learning” approach is involved.

Negative examples for generative models A fundamental problem surrounding generative
models is how to de�ne “generalization” [ZRY+18]. Generalization is necessary in generative
models because without such a notion we can simply memorize the entire training dataset and
achieve the minimum loss; however it is di�cult to specify the boundaries to which we wish to
generalize. If we have a image dataset with every image containing two objects, then it would be
natural to not generate images with one or three objects; however, if the dataset contains images
with two, three, and four objects, then suddenly it could be di�cult to determine whether we
should generate images with one or �ve objects.

The extent to which the model should generalize beyond the dataset is typically encoded as an
inductive bias that is implicit within the model (and mostly beyond user control). However, there
are cases where we wish to tell the model when it should not generalize. In [SKS+21], we discuss
how we can incorporate such prior knowledge into the generative model, by simply performing data
augmentations that produces “negative examples”. This “negative data augmentation” technique
directly impacts the supervised learning procedure and improves the resulting generative model
(Figure 1.2a).

Few-show conditions for generative models Downstream applications of generative models
are often based on various conditioning signals, such as labels [MO14], text descriptions [MPBS15]
and reward values [YLY+18]. If we attempt to directly train conditional models, we would have
to acquire large amounts of paired data [LMB+14, RPG+21] that are costly. Therefore, it is often
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Unconditional model 
from unlabeled data

Recognition model from
few-shot supervision Conditional generation

+ “blond hair” =

+ “red lipstick” =

“Blond hair”

Figure 1.4: Overview of few-shot conditional generation.

desirable to learn good generative models from large amounts of unlabeled data, and then embed
new conditions via supervised learning; if we are able to learn high-quality representations, then
the supervised learning procedure here would not have to involve lots of data. In [SSME21], we
discuss how advances in representation learning can be leveraged to perform few-shot conditional
generative modeling, where a few labeled examples are all that is needed to introduce conditions
to an unconditional generative model (Figure 1.4).

1.1.3 Inference via Supervised Learning

Target Density

0 10 20
Time

10

5

0

5

10
Hand crafted MCMC

0 10 20 30 40 50
Time

10

5

0

5

10
Learned MCMC (Ours)

Learn from samples

Teach about efficiency

Learned Model

Figure 1.5: Supervised learning for Bayesian inference. We can use supervised learning to
measure e�ciency of MCMC proposals.

Bayesian Inference Markov Chain Monte Carlo (MCMC) methods have played important roles
in statistics and machine learning as a fundamental method for probabilistic inference and sampling.
Despite their immense success, they have seen little use with deep neural networks. This is because
evaluating and selecting a good proposal distribution – a key element in MCMC – is often more
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art than science [HLZ16], i.e., it requires design choices from domain experts that are di�cult to
describe via automated procedures.

I addressed this challenge via supervised learning, where a model learns to evaluate the e�ciency
of a proposal distribution from supervised learning. In turn, this model can be used to optimize
for more e�cient MCMC proposals. This has lead to the �rst end-to-end method that learns an
e�cient MCMC proposal with neural networks [SZE17]. The key insight is that higher-quality
MCMC proposals produce samples that are less correlated, which can be quanti�ed through a
classi�er that distinguishes correlated samples from decorrelated ones. The classi�er then provides
a di�erentiable objective that can be used to guide more e�cient proposals. My learned proposals
outperformed the best hand-crafted ones by 3× to 500× in terms of statistical e�ciency, opening
the avenue for MCMC methods to bene�t from deep learning.

AgentReward Model

Complex Interactions

Teach about Rewards

Diverse 
Behaviors

Learn from Actions

Figure 1.6: Supervised learning for reward inference. These rewards can then be used to learn
diverse behaviors, such as in autonomous driving.

Inference in Inverse Reinforcement Learning A key aspect of intelligent agents is the ability
to perform sequential decision making. While reinforcement learning is successful for this goal
when reward functions are well-de�ned, their applications are limited in real-world multi-agent
scenarios where it is di�cult to engineer the correct reward functions, such as autonomous driving;
even the slightest reward mis-speci�cation can have catastrophic e�ects [HMMA+17, AC16].

I address this issue via supervised learning: given multi-agent interactions, we learn multiple
classi�ers to distinguish demonstrated interactions from learned ones; these classi�ers can then
serve as reward functions to guide multi-agent policies. These learned classi�ers can guide agents
towards desired complex behaviors, which do not have to be cooperative or zero-sum as often
assumed by prior work. Based on this, I proposed the �rst framework that infers reward functions
from general multi-agent interactions, which only assumes that the demonstrators form a Nash
Equilibrium [SRSE18].
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For more realistic scenarios with many agents such as tra�c, I further extended this framework
to a novel equilibrium concept that assumes bounded rationality of the demonstrators [YSE19].
I made it scalable to many more agents, learning from real-world tra�c data and inferring the
latent behavior of the agents [LSE17a, GSKE20]. On real-world tra�c datasets, our learned policies
provide a 50% - 70% reduction in the number of crashes compared to other learned policies.

1.2 Dissertation Structure

This dissertation consists of three parts, where we discuss how supervised learning can be integrated
and improved in three distinctive yet connected problems in unsupervised machine learning:
compression, generation and inference.

Part I is about compression – learning rich and compact representations of data without labels.
In particular, we consider the information maximization paradigm and explore the fundamental
limitations and practical challenges of applying this notion to unsupervised representation learning.

In Chapter 3, we start by a summary of how mutual information are estimated and optimized in
unsupervised representation learning and discuss their limitations. We then introduce an estimator
that has signi�cantly lower variance. This chapter was previously published as [SE20c].

In Chapter 4, we further discuss the bias and variance trade-o�s of mutual information lower
bound estimators, which can also be optimized for representation learning. We introduce an
estimator based on multi-label classi�cation that achieves the lowest bias among all valid lower
bound estimators. This chapter was previous published as [SE20b].

In Chapter 5, we consider a regression approach to mutual information estimation and apply it
to learning fair representations. This chapter is primarily based on [SKG+19] and also includes
materials from [XZS+20].

Part II is about generation – learning generative models from unlabeled data that can be used to
synthesize additional novel data. We can improve generative models by improving the correspond-
ing supervised learning components. We also leverage methods and observations introduced in
Part I.

In Chapter 6, we discuss a reweighted objective function in supervised learning, how it is
related to traditional estimators of probability divergences, and how it can be used to improve
generative modeling. This chapter was previously published as [SE20a].
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In Chapter 7, we introduce negative data augmentations in supervised learning, which reduces
bias and improves generalization of generative models. This chapter was previous published as
[SKS+21].

In Chapter 8, we consider a generative model that is suitable for few-shot conditional generation,
i.e., new conditions can be learned from a few examples. Thanks to supervised learning methods
for representation learning, our approach can learn new conditions from as few as 100 examples,
which can then be applied to image generation and manipulation. This chapter is primarily based
on [SSME21] and also includes materials from [SME20].

Part III is about inference – how machines can e�ciently infer latent factors from observations
when these factors are hard to provide by humans. We can use supervised learning to infer these
latent factors or improve the inference process itself.

In Chapter 9, we introduce the �rst method that learns to optimize Markov chain Monte Carlo
methods, which is a hallmark in Bayesian inference (and one of the top-10 algorithms in the 20th
century). This chapter was previously published as [SZE17].

In Chapter 10, we discuss how we can infer latent variables that re�ect the intentions of agents
operating in a multi-agent scenario, which can be applied to transportation systems. This chapter
is primarily based on [SRSE18] and [YSE19] and also includes materials from [GSKE20].

We conclude and discuss future directions in Chapter 11.2.



Chapter 2

Background

We begin by providing some background on learning distributions, i.e., comparing and optimizing
high-dimensional distributions, which includes images, videos, audio, graphs, and demonstrations
sequences among other data modalities. We �rst formally setup the task of comparing and opti-
mizing distributions. Next, we discuss several machine learning problems that belong to learning
distributions, such as compression and generation. Finally, we categorize and compare two major
approaches of learning distributions that leverages supervised learning techniques.

2.1 Comparing and Optimizing Distributions

Notations We use uppercase letters to denote a probability measure (e.g., P , Q) and corre-
sponding lowercase letters to denote its density (likelihood) functions (e.g., p, q) unless speci�ed
otherwise (in certain cases we may use notations such as dP and dQ). We use X,Y to denote
random variables with sample spaces denoted as X and Y respectively, and P(X ) (or P(Y)) to
denote the set of all probability measures over the Borel σ-algebra on X (or Y).

Under Q ∈ P(X ), the p-norm of a function r : X → R is de�ned as

‖r‖p := (

∫
|r|pdQ)1/p

with ‖r‖∞ = limp→∞‖r‖p. The set of locally p-integrable functions is de�ned as

Lp(Q) := {r : X → R | ‖r‖p <∞}.

10
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The space of probability measures wrt. Q is de�ned as

∆(Q) := {r ∈ L1(Q) | ‖r‖1 = 1, r ≥ 0};

we also call this the space of “valid probability ratios” / “valid density ratios” wrt. Q. For example,
dP/ dQ ∈ ∆(Q) because ‖dP/ dQ‖1 =

∫
(dP/ dQ) dQ = 1. We use P � Q to denote that P is

absolutely continuous with respect to Q.
Let us assume that we have two distributions P and Q, under the same domain. In many

machine learning problems, we access to these distributions via i.i.d. samples but do not have
further knowledge about them. For example, we have access to a dataset of high-resolution images
and assume these are collected i.i.d. from an underlying data distribution P , yet we cannot query
the probability mass/density function of the data distribution P . A general scenario for machine
learning tasks is to estimate and/or optimize some notion of discrepancy (e.g., a probabilistic
divergence) between the two distributions P and Q (for which we often access only via samples):

D(P,Q) or alternatively, D(p, q) (2.1)

which are both based on common notation practices in machine learning. One common divergence
is the KL divergence:

DKL(P,Q) = Ex∼P [log dP (x)− log dQ(x)] (2.2)

:= Ex∼P [log p(x)− log q(x)] (2.3)

minimizing which is highly related to maximum likelihood. KL divergence also belongs to a
large family of divergence called f -divergences. For any convex and semi-continuous function
f : [0,∞) → R satisfying f(1) = 0, the f -divergence [Csi64, AS66] between two probabilistic
measures P,Q ∈ P(X ) is de�ned as:

Df (P,Q) := EQ
[
f

(
dP

dQ

)]
(2.4)

=

∫
X
f

(
dP

dQ
(x)

)
dQ(x), (2.5)

if P � Q and +∞ otherwise. The f for KL-divergence is simply f(u) = u log u. We defer the
discussion of other divergences, such as the integral probability metric [Mül97], to the relevant
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chapter.
Next, we discuss speci�c problems of compression, generation, and inference that belong to

the general problem of estimating/optimizing distributions.

2.1.1 Compression

We use the term compression as an alias to learning compact representations from unlabeled data.
In representation learning, we are interested in learning a (possibly stochastic) network h : X → Y
that maps some data x ∈ X to a compact representation h(x) ∈ Y . For ease of notation, we denote
p(x) as the data distribution, p(x,y) as the joint distribution for data and representations (denoted
as y), p(y) as the marginal distribution of the representations, and X,Y as the random variables
associated with data and representations. The InfoMax principle [Lin88, BS95, DHFLM+18] for
learning representations considers variational maximization of the mutual information I(X;Y ):

I(X;Y ) := E(x,y)∼p(x,y)

[
log

p(x,y)

p(x)p(y)

]
(2.6)

Mutual information is also the KL-divergence between two distributions P = p(x,y) and q =

p(x)p(y), which is maximized for the purpose of compression. Thus the objective function
becomes:

maximize DKL(p(x,y), p(x)p(y)), (2.7)

which is our main focus in Part I.

2.1.2 Generation

In generative modeling, our goal is to learn a data distribution P := pdata given access to a training
set (e.g., a dataset of images). To this end, we parametrize a family of modelsM whose elements
Q := qθ are speci�ed by a set of real-valued parameters θ. Our goal is to �nd the distribution
qθ ∈M such that some notion of discrepancy between pdata and qθ is minimized:

minimize D(P,Q), (2.8)

and the learned model distribution would be close enough to the desired data distribution. This is
our main focus in Part II.
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Learning representations without labels

25

“image” “representation”

Shuffle

Figure 2.1: Compression as optimizing a discrepancy. In this illustration, x are the raw images
and y are the corresponding embeddings obtained from a neural networks. Our goal is to maximize
the discrepancy between p(x,y) and p(x)p(y) such that the learned representations are more
suitable for other downstream tasks.

Learning generative models
Generative Adversarial Networks (GANs)

39

Unlabeled 
dataset Model

Challenge: optimization with minimax! Figure 2.2: Generation as optimizing a discrepancy. Our goal is to minimize the discrepancy
between the data distribution (represented as the image dataset) and model distribution, such that
the model can be used to synthesis new images.
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Learning to accelerate inference
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Convergence is 
guaranteed

Sequence of 
distributions

Challenge: cannot sample from the limit!

Figure 2.3: Inference as optimizing a discrepancy. In Markov chain Monte Carlo methods, our
goal is to select an appropriate Markov chain that converges quickly to the stationary distribution;
speci�cally, we minimize the discrepancy between the stationary distribution distribution and the
distribution obtained at a certain timestep t.

2.1.3 Inference

Probabilistic inference (or Bayesian inference) is a method of statistical inference which uses Bayes’
rule to update the probability for a hypothesis. Suppose that we have a prior distribution for
hypotheses p(Θ) and a likelihood function of the data y conditioned on a certain hypothesis
p(y|Θ), then updated posterior distribution p(Θ|y) can be computed from the Bayes’ rule:

P := p(Θ|y) ∝ p(y|Θ)p(Θ) (2.9)

In this dissertation, we discuss two cases where supervised learning can be applied to inference. In
Chapter 9, we discuss how we can optimize for more e�cient inference procedures; in Chapter 10,
we introduce how to use supervised learning to solve an inference problem. Here we discuss more
extensively the setup in Chapter 9.

Speci�cally, we consider the case of Markov chain Monte Carlo (MCMC), which is a general
purpose method for sampling from a probability distribution (e.g., the posterior P ) [N+11]. Intu-
itively, MCMC methods construct ergodic Markov chains; let us denote the resulting distribution
at time t to be Qt. A nice property of MCMC is that its stationary distribution (i.e., the distribution
reached when the Markov chain was sampled for in�nite time, or Q∞) is guaranteed to be the
desired probability distribution for a large family of valid transitions. However, as we have only
limited computational power, it is more desirable to select more e�cient transitions that converge
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faster; this gives rise to the following objective:

minimize D(P,Qt) (2.10)

for some time step t (or many di�erent time steps). Smaller divergence values would suggest that
the Markov chain converges faster to the stationary distribution P .

2.2 Variational Methods for Comparing Distributions

As we do not have much additional information of the distributions P and Q beyond samples,
we would have to rely on approximations to estimate and/or optimize the divergences. In this
section, we brie�y describe two families of variational methods of estimating divergences, one
based on a lower bound and the other based on the upper bound; choice of the speci�c variational
approach may depend on the speci�c setup. For example, if we wish to minimize the divergence
(e.g., generative modeling), then upper bounds can be more stable to optimize than lower bounds;
if the reverses is true (e.g., representation learning), then we might prefer lower bounds instead.

Jensen’s inequality Jensen’s inequality is a general inequality that appears in many forms
depending on the context, from which many results in the dissertation are derived.

Lemma 1 (Jensen’s inequality). Let ψ : X → R be a convex function, and P ∈ P(X ) a distribution

with sample space X . Then:

Ex∼P [ψ(x)] ≥ ψ(Ex∼P [x]) (2.11)

Fenchel duality For functions g : X → R de�ned over a Banach space X , the Fenchel dual of g,
g∗ : X ∗ → R is de�ned over the dual space X ∗ by:

g∗(x∗) := sup
x∈X
〈x∗,x〉 − g(x), (2.12)

where 〈·, ·〉 is the duality paring. For example, the dual space of Rd is also Rd and 〈·, ·〉 is the usual
inner product [Roc70].
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2.2.1 Lower bounds of f-divergences

We �rst introduce a known variational lower bound to f -divergences [NWJ08], which serves as
the basis of using supervised learning methods. [NWJ10] derive a general variational method to
estimate f -divergences given only samples from P and Q.

Lemma 2 ([NWJ10]). ∀P,Q ∈ P(X ) such that P � Q, and di�erentiable f :

Df (P‖Q) = sup
T∈L∞(Q)

If (T ;P,Q), (2.13)

where If (T ;P,Q) := EP [T (x)]− EQ[f∗(T (x))] (2.14)

and the supremum is achieved when T = f ′(dP/ dQ).

Example 1: Generative Adversarial Networks In generative adversarial networks (GANs,
[GPAM+14]), the goal is to �t an (empirical) data distribution Pdata with an implicit generative
model over X , denoted as Qθ ∈ P(X ). Qθ is de�ned implicitly via the process X = Gθ(Z), where
Z is a random variable with a �xed prior distribution. Assuming access to i.i.d. samples from Pdata

and Qθ, a discriminator Tφ : X → [0, 1] is used to classify samples from the two distributions,
leading to the following objective:

min
θ

max
φ

Ex∼Pdata
[log Tφ(x)] + Ex∼Qθ [log(1− Tφ(x))].

If we have in�nite samples from Pdata, and Tφ and Qθ are su�ciently expressive, then the above
minimax objective will reach an equilibrium where Qθ = Pdata and Tφ(x) = 1/2 for all x ∈ X .

In the context of GANs, [NCT16] proposed variational f -divergence minimization where one
estimates Df (pdata‖Qθ) with the variational lower bound in equation 2.13 while minimizing over
θ the estimated divergence. This leads to the f -GAN objective:

min
θ

max
φ

Ex∼Pdata
[Tφ(x)]− Ex∼Qθ [f

∗(Tφ(x))], (2.15)

where the original GAN objective is a special case for f(u) = u log u− (u+ 1) log(u+ 1) + 2 log 2.

Example 2: Contrastive Predictive Coding A variety of mutual information estimators have
been proposed for representation learning [NWJ08, vdOKV+16, BBR+18, POvdO+19]. Contrastive



CHAPTER 2. BACKGROUND 17

predictive coding (CPC, also known as InfoNCE [vdOLV18]), poses the mutual information estima-
tion problem as an m-class classi�cation problem. Here, the goal is to distinguish a positive pair
(x,y) ∼ p(x,y) from (m− 1) negative pairs (x,y) ∼ p(x)p(y). If the optimal classi�er is able
to distinguish positive and negative pairs easily, it means x and y are tied to each other, indicating
high mutual information.

For a batch of n positive pairs {(xi,yi)}ni=1, the CPC objective is de�ned as1:

L(g) := E

[
1

n

n∑
i=1

log
m · g(xi,yi)

g(xi,yi) +
∑m−1

j=1 g(xi,yi,j)

]
(2.16)

for some positive critic function g : X × Y → R+, where the expectation is taken over n positive
pairs (xi,yi) ∼ p(x,y) and n(m− 1) negative pairs (xi,yi,j) ∼ p(x)p(y).

In Chapter 4, we present a more detailed argument showing that the CPC objective is a lower
bound to mutual information.

2.2.2 Upper bounds of f-divergences

Let us consider the case of hypothetical latent variable models p(x, z) and q(x, z) where:∫
p(x, z) dz = p(x),

∫
q(x, z) dz = q(x). (2.17)

We have the following upper bound of Df (p(x), q(x)) from Jensen’s inequality:

Df (p(x, z), q(x, z)) =

∫
q(x)

∫
q(z|x)f

(
p(x, z)

q(x, z)

)
dz dx (2.18)

≥
∫
q(x)f

(∫
q(z|x)

p(x, z)

q(x, z)
dz

)
dx = Df (p(x), q(x)) (2.19)

A special case is the KL divergence, where

DKL(q(x, z), p(x, z)) = Eq(x)Eq(z|x)[log q(z|x)− log p(x, z)]−H(q(z)) (2.20)

where H(q(x)) = Eq(x)[log q(x)] denotes the entropy. If we denote q(x) as the data distribution,
then its entropy is constant with respect to the model distribution and thus can be safely ignored;
this is the foundation to the evidence lower bound (ELBO) in variational inference, and can be used
to derive the variational autoencoder (VAE) objective function [KW13, RMW14]. Other examples

1We suppress the dependencies on n and m in L(g) (and in subsequent objectives) for conciseness.
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of applying upper bounds of f -divergences include the Neural Density Imitation method [KJS+20]
and Denoising Di�usion Probabilistic Models [HJA20, SME20]; for conciseness, we only discuss
the VAE objective in this chapter.

Example: Variational Autoencoders A latent variable generative model (LVGM) is posed as
a conditional distribution pθ : Z → P(X ) from a latent variable z to a generated sample x,
parametrized by θ. To acquire new samples, LVGMs draw random latent variables z from some
distribution p(z) and map them to image samples through x ∼ pθ(x|z). Most LVGMs are built
on top of four paradigms: variational autoencoders (VAEs, [KW13, RM15]), Normalizing Flows
(NFs, [DKB14, DSDB16]), Generative Adversarial Networks (GANs, [GPAM+14]), and di�usion /
score-based generative models [HJA20, SE19c].

Particularly, VAEs use an inference model from x to z for training. Denoting the inference
distribution from x to z as qφ(z|x) and the generative distribution from z to x as pθ(x|z), VAEs
are trained by minimizing the following upper bound of negative log-likelihood:

LVAE = Ex∼pdata [Ez∼qφ(z|x)[− log pθ(x|z)] +DKL(qφ(z|x), p(z))] (2.21)

= Ex∼pdata [Ez∼qφ(z|x)[− log pθ(x, z)− log qφ(z|x))] (2.22)

= Ex∼pdata

[
Ez∼qφ(z|x)

[
− log

pθ(x, z)

qφ(z|x)

]]
(2.23)

≥ Ex∼pdata

[
− logEz∼qφ(z|x)

[
pθ(x, z)

qφ(z|x)

]]
= Ex∼pdata [− log pθ(x)] (2.24)

where pdata is the data distribution and DKL is the KL-divergence.
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Compression via Supervised Learning

19



Chapter 3

Compression via Mutual Information

Let us begin our journey with supervised learning for compression, i.e., representation learning.
Much prior work on data compression rely on hand-designed procedures for speci�c applications
(such as recovering original images from JPEG and PNG), which are not necessarily optimal for
other data modalities and tasks (such as image retrieval). This task is also di�cult to supervise
directly: unlike labels of an image, it is hard to have a consensus over how to compress the data
(e.g. from crowdsourcing). A common principle that is adopted in representation learning is
based on the mutual information maximization principle (InfoMax), namely, we wish to maximize
the mutual information between the original data and the learned representations. Variational
approaches based on neural networks are showing promise for estimating mutual information (MI)
between high dimensional variables. However, they can be di�cult to use in practice due to poorly
understood bias/variance trade-o�s.

In this chapter, we theoretically show that, under some conditions, estimators such as MINE
exhibit variance that could grow exponentially with the true amount of underlying MI. We also
empirically demonstrate that existing estimators fail to satisfy basic self-consistency properties of
MI, such as data processing and additivity under independence. Based on a uni�ed perspective of
variational approaches, we develop a new estimator that focuses on variance reduction. Empirical
results on standard benchmark tasks demonstrate that our proposed estimator exhibits improved
bias-variance trade-o�s on standard benchmark tasks.

This chapter is previously published as [SE20c].

20
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3.1 Introduction

Mutual information (MI) estimation and optimization are crucial to many important problems in
machine learning, such as representation learning [CDH+16, ZSE18a, TZ15, HAP+18] and rein-
forcement learning [PAED17, vdOLV18]. However, estimating mutual information from samples is
challenging [MS18] and traditional parametric and non-parametric approaches [NBVS04, GVSG15,
GKOV17] struggle to scale up to modern machine learning problems, such as estimating the MI
between images and learned representations.

Recently, there has been a surge of interest in MI estimation with variational approaches [BA03,
NWJ10, DV75], which can be naturally combined with deep learning methods [AFDM16, vdOLV18,
POvdO+19]. Despite their empirical e�ectiveness in downstream tasks such as representation
learning [HFLM+18, VFH+18], their e�ectiveness for MI estimation remains unclear. In particular,
higher estimated MI between observations and learned representations do not seem to indicate
improved predictive performance when the representations are used for downstream supervised
learning tasks [TDR+19].

In this chapter, we discuss two limitations of variational approaches to MI estimation. First, we
theoretically demonstrate that the variance of certain estimators, such as the Mutual Information
Neural Estimator (MINE, [BBR+18]), could grow exponentially with the ground truth MI, leading to
poor bias-variance trade-o�s. Second, we propose a set of self-consistency tests over basic properties
of MI, and empirically demonstrate that all considered variational estimators fail to satisfy critical
properties of MI, such as data processing and additivity under independence. These limitations
challenge the e�ectiveness of these methods for estimating or optimizing MI.

To mitigate these issues, we propose a uni�ed perspective over variational estimators treating
variational MI estimation as an optimization problem over (valid) likelihood ratios. This view
highlights the role of estimating partition functions, which is the culprit of high variance issues in
MINE. To address this issue, we propose to improve MI estimation via variance reduction techniques
for partition function estimation. Empirical results demonstrate that our estimators have much
better bias-variance trade-o� compared to existing methods on standard benchmark tasks.

3.2 Background and Related Work

Additional Notations We use ÎE to denote an estimator for IE where we replace expectations
with sample averages.
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3.2.1 Variational Mutual Inforamtion Estimation

The mutual information between two random variables X and Y is the KL divergence between the
joint and the product of marginals:

I(X;Y ) = DKL(P (X,Y )‖P (X)P (Y )) (3.1)

which we wish to estimate using samples from P (X,Y ); in certain cases we may know the
density of marginals (e.g. P (X)). There are a wide range of variational approaches to variational
MI estimation. A traditional variational information maximization approach uses the following
result [BA03]:

Lemma 3 (Barber-Agakov (BA)). For two random variables X and Y :

I(X;Y ) = sup
qφ

{
EP (X,Y ) [log qφ(x|y)− log p(x)] =: IBA(qφ)

}
(3.2)

where qφ : Y → P(X ) is a valid conditional distribution over X given y ∈ Y and p(x) is the

probability density function of the marginal distribution P (X).

Another family of approaches perform MI estimation through variational lower bounds to KL
divergences. For example, the Mutual Information Neural Estimator (MINE, [BBR+18]) applies the
following lower bound to KL divergences [DV75].

Lemma 4 (Donsker-Varadahn (DV)). ∀P,Q ∈ P(X ) such that P � Q,

DKL(P‖Q) = sup
T∈L∞(Q)

{
EP [T ]− logEQ[eT ] =: IMINE(T )

}
. (3.3)

In order to estimate mutual information, one could set P = P (X,Y ) and Q = P (X)P (Y ),
T as a parametrized neural network (e.g. Tθ(x,y) parametrized by θ), and obtain the estimate
by optimizing the above objective via stochastic gradient descent over mini-batches. However,
the corresponding estimator ÎMINE (where we replace the expectations in Eq. (3.3) with sample
averages) is biased, leading to biased gradient estimates; [BBR+18] propose to reduce bias via
estimating the partition function EQ[eT ] with exponential moving averages of mini-batches.

The variational f -divergence estimation approach [NWJ10, NCT16] considers lower bounds on
f -divergences which can be specialize to KL divergence, and subsequently to mutual information
estimation (this is a special case to Lemma 2 in Chapter 2):
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Lemma 5 (Nyugen et al. (NWJ)). ∀P,Q ∈ P(X ) such that P � Q,

DKL(P‖Q) = sup
T∈L∞(Q)

{
EP [T ]− EQ[eT−1] =: INWJ(T )

}
(3.4)

and DKL(P‖Q) = INWJ(T ) when T = log(dP/ dQ) + 1.

The supremum over T is a invertible function of the density ratio dP/ dQ, so one could use
this approach to estimate density ratios by inverting the function [NWJ10, NCT16, GE17]. The
corresponding mini-batch estimator (denoted as ÎNWJ) is unbiased, so unlike MINE, this approach
does not require special care to reduce bias in gradients.

Contrastive Predictive Coding (CPC, [vdOLV18]) considers the following objective:

ICPC(fθ) := EPn(X,Y )

[
1

n

n∑
i=1

log
fθ(xi,yi)

1
n

∑n
j=1 fθ(xi,yj)

]
(3.5)

where fθ : X × Y → R≥0 is a neural network parametrized by θ and Pn(X,Y ) denotes the joint
pdf for n i.i.d. random variables sampled from P (X,Y ). CPC generally has less variance but is more
biased because its estimate does not exceed log n, where n is the batch size [vdOLV18, POvdO+19].
While one can further reduce the bias with larger n, the number of evaluations needed for estimating
each batch with fθ is n2, which scales poorly. To address the high-bias issue of CPC, Poole et

al., [POvdO+19] proposed an interpolation between ICPC and INWJ to obtain more �ne-grained
bias-variance trade-o�s.

Table 3.1: Summarization of variational estimators of mutual information. The ∈ ∆(Q)
column denotes whether the estimator is a valid density ratio wrt. Q. (X) means any parameteri-
zation is valid; (n→∞) means any parameterization is valid as the batch size grows to in�nity;
(tr→∞) means only the optimal parametrization is valid (in�nite training cost).

Category Estimator Params Γ(r;Qn) ∈ ∆(Q)

Gen. ÎBA qφ qφ(x|y)/p(x) X
ÎGM (Eq. (3.9)) pθ, pφ, pψ pθ(x,y)/pφ(x)pψ(y) tr→∞

Disc.
ÎMINE Tθ eTθ(x,y)/EQn [eTθ(x,y)] n→∞
ÎCPC fθ fθ(x,y)/EPn(Y )[fθ(x,y)] X
ÎSMILE Tθ, τ eTθ(x,y)/EQn [eclip(Tθ(x,y),−τ,τ)] n, τ →∞
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3.3 Variationalmutual information estimation as optimization over

density ratios

In this section, we unify several existing methods for variational mutual information estimation.
We �rst show that variational mutual information estimation can be formulated as a constrained
optimization problem, where the feasible set is ∆(Q), i.e. the valid density ratios with respect to Q.

Theorem 1. ∀P,Q ∈ P(X ) such that P � Q we have

DKL(P‖Q) = sup
r∈∆(Q)

EP [log r] (3.6)

where the supremum is achived when r = dP/ dQ.

We defer the proof in Appendix A.1. The above argument works for KL divergence between
general distributions, but in this paper we focus on the special case of mutual information estimation.
For the remainder of the paper, we use P to represent the short-hand notation for the joint
distribution P (X,Y ) and use Q to represent the short-hand notation for the product of marginals
P (X)P (Y ).

3.3.1 A summary of existing variational methods

From Theorem 1, we can describe a general approach to variational MI estimation:

1. Obtain a density ratio estimate – denote the solution as r;

2. Project r to be close to ∆(Q) – in practice we only have samples from Q, so we denote the
solution as Γ(r;Qn), where Qn is the empirical distribution of n i.i.d. samples from Q;

3. Estimate mutual information with EP [log Γ(r;Qn)].

We illustrate two examples of variational mutual information estimation that can be summarized
with this approach. In the case of Barber-Agakov, the proposed density ratio estimate is rBA =

qφ(x|y)/p(x) (assuming that p(x) is known), which is guaranteed to be in ∆(Q) because

EQ [qφ(x|y)/p(x)] =

∫
qφ(x|y)/p(x)dP (x)dP (y) = 1, ΓBA(rBA, Qn) = rBA (3.7)

for all conditional distributions qφ. In the case of MINE / Donsker-Varadahn, the logarithm of the
density ratio is estimated with Tθ(x,y); the corresponding density ratio might not be normalized,
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so one could apply the following normalization for n samples:

EQn
[
eTθ/EQn [eTθ ]

]
= 1, ΓMINE(eTθ , Qn) = eTθ /EQn [eTθ ] (3.8)

where EQn [eTθ ] (the sample average) is an unbiased estimate of the partition function EQ[eTθ ];
ΓDV(eTθ , Qn) ∈ ∆(Q) is only true when n → ∞. Similarly, we show ICPC is a lower bound to
MI in Corollary 7, Appendix A.1, providing an alternative proof to the one in [POvdO+19].

These examples demonstrate that di�erent mutual information estimators can be obtained in a
procedural manner by implementing the above steps, and one could involve di�erent objectives
at each step. For example, one could estimate density ratio via logistic regression [HFLM+18,
POvdO+19, MAK19] while using INWJ or IMINE to estimate MI. While logistic regression does
not optimize for a lower bound for KL divergence, it provides density ratio estimates between P
and Q which could be used for subsequent steps.

3.3.2 Generative and discriminative approaches to MI estimation

The above discussed variational mutual information methods can be summarized into two broad
categories based on how the density ratio is obtained.

• The discriminative approach estimates the density ratio dP/dQ directly; examples include
the MINE, NWJ and CPC estimators.

• The generative approach estimates the densities of P and Q separately; examples include the
BA estimator where a conditional generative model is learned. In addition, we describe a
generative approach that explicitly learns generative models (GM) for P (X,Y ), P (X) and
P (Y ):

IGM(pθ, pφ, pψ) := EP [log pθ(x,y)− log pφ(x)− log pψ(y)], (3.9)

where pθ, pφ, pψ are maximum likelihood estimates of P (X,Y ), P (X) and P (Y ) respec-
tively. We can learn the three distributions with generative models, such as VAE [KW13] or
Normalizing �ows [DSDB16], from samples.

We summarize various generative and discriminative variational estimators in Table 3.1.

Di�erences between two approaches While both generative and discriminative approaches
can be summarized with the procedure in Section 3.3.1, they imply di�erent choices in modeling,
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estimation and optimization.

• On the modeling side, the generative approaches might require more stringent assumptions
on the architectures (e.g. likelihood or evidence lower bound is tractable), whereas the
discriminative approaches do not have such restrictions.

• On the estimation side, generative approaches do not need to consider samples from the
product of marginals P (X)P (Y ) (since it can model P (X,Y ), P (X), P (Y ) separately), yet
the discriminative approaches require samples from P (X)P (Y ); if we consider a mini-batch
of size n, the number of evaluations for generative approaches is Ω(n) whereas that for
discriminative approaches it could be Ω(n2).

• On the optimization side, discriminative approaches may need additional projection steps to
be close to ∆(Q) (such as IMINE), while generative approaches might not need to perform
this step (such as IBA).

3.4 Limitations of existing variational estimators

3.4.1 Good discriminative estimators require exponentially large batches

In the ÎNWJ and ÎMINE estimators, one needs to estimate the “partition function” EQ[r] for some
density ratio estimator r; for example, ÎMINE needs this in order to perform the projection step
ΓMINE(r,Qn) in Eq (3.8). Note that the INWJ and IMINE lower bounds are maximized when r takes
the optimal value r? = dP/ dQ. However, the sample averages ÎMINE and ÎNWJ of EQ[r?] could
have a variance that scales exponentially with the ground-truth MI; we show this in Theorem 2.

Theorem 2. Assume that the ground truth density ratio r? = dP/ dQ and VarQ[r?] exist. Let Qn
denote the empirical distribution of n i.i.d. samples from Q and let EQn denote the sample average

over Qn. Then under the randomness of the sampling procedure, we have:

VarQ[EQn [r?]] ≥ eDKL(P‖Q) − 1

n
(3.10)

lim
n→∞

nVarQ[logEQn [r?]] ≥ eDKL(P‖Q) − 1. (3.11)

We defer the proof to Appendix A.1. Note that in the theorem above, we assume the ground
truth density ratio r? is already obtained, which is the optimal ratio for NWJ and MINE estimators.
As a natural consequence, the NWJ and MINE estimators under the optimal solution could exhibit
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variances that grow exponentially with the ground truth MI (recall that in our context MI is a KL
divergence). One could achieve smaller variances with some r 6= r?, but this guarantees looser
bounds and higher bias.

Corollary 1. Assume that the assumptions in Theorem 2 hold. Let Pm and Qn be the empirical

distributions ofm i.i.d. samples from P and n i.i.d. samples from Q, respectively. De�ne

Im,nNWJ := EPm [log r? + 1]− EQn [r?] (3.12)

Im,nMINE := EPm [log r?]− logEQn [r?] (3.13)

where r? = dP/dQ. Then under the randomness of the sampling procedure, we have ∀m ∈ N:

VarP,Q[Im,nNWJ] ≥ (eDKL(P‖Q) − 1)/n (3.14)

lim
n→∞

nVarP,Q[Im,nMINE] ≥ eDKL(P‖Q) − 1. (3.15)

This high variance phenomenon has been empirically observed in [POvdO+19] (Figure 3) for
ÎNWJ under various batch sizes, where the log-variance scales linearly with MI. We also demonstrate
this in Figure 3.2 (Section 3.6.1). In order to keep the variance of ÎMINE and ÎNWJ relatively constant
with growing MI, one would need a batch size of n = Θ(eDKL(P‖Q)). ÎCPC has small variance, but
it would need n ≥ eDKL(P‖Q) to have small bias, as its estimations are bounded by log n.

3.4.2 Self-consistency issues for mutual information estimators

If we consider X , Y to be high-dimensional, estimation of mutual information becomes more
di�cult. The density ratio between P (X,Y ) and P (X)P (Y ) could be very di�cult to estimate
from �nite samples without proper parametric assumptions [MS18, ZRY+18]. Additionally, the
exact value of mutual information is dependent on the de�nition of the sample space; given �nite
samples, whether the underlying random variable is assumed to be discrete or continuous will
lead to di�erent measurements of mutual information (corresponding to entropy and di�erential
entropy, respectively).

In machine learning applications, however, we are often more interested in maximizing or
minimizing mutual information (estimates), rather than estimating its exact value. For example, if
an estimator is o� by a constant factor, it would still be useful for downstream applications, even
though it can be highly biased. To this end, we propose a set of self-consistency tests for any MI
estimator Î , based on properties of mutual information:
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1. (Independence) if X and Y are independent, then Î(X;Y ) = 0;

2. (Data processing) for all functions g, h,

Î(X;Y ) ≥ Î(g(X);h(Y ))

and
Î(X;Y ) ≈ Î([X, g(X)]; [Y, h(Y )])

where [·, ·] denotes concatenation.

3. (Additivity) denote X1, X2 as independent random variables that have the same distribution
as X (similarly de�ne Y1, Y2), then Î([X1, X2]; [Y1, Y2]) ≈ 2 · Î(X,Y ).

These properties holds under both entropy and di�erential entropy, so they do not depend on
the choice of the sample space. While these conditions are necessary but obviously not su�cient
for accurate mutual information estimation, we argue that satisfying them is highly desirable
for applications such as representation learning [CDH+16] and information bottleneck [TZ15].
Unfortunately, none of the MI estimators we considered above pass all the self-consistency tests
when X,Y are images, as we demonstrate below in Section 3.6.2. In particular, the generative

approaches perform poorly when MI is low (failing in independence and data processing), whereas
discriminative approaches perform poorly when MI is high (failing in additivity).

3.5 Mutual information estimation via clipped density ratios

To address the high-variance issue in the INWJ and IMINE estimators, we propose to clip the density
ratios when estimating the partition function. We de�ne the following clip function:

clip(v, l, u) = max(min(v, u), l) (3.16)

For an empirical distribution ofn samplesQn, instead of estimating the partition function viaEQn [r],
we instead consider EQn [clip(r, e−τ , eτ )] where τ ≥ 0 is a hyperparameter; this is equivalent to
clipping the log density ratio estimator between −τ and τ .

We can then obtain a following estimator with smoothed partition function estimates:

ISMILE(Tθ, τ) := EP [Tθ(x,y)]− logEQ[clip(eTθ(x,y), e−τ , eτ )] (3.17)
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where Tθ is a neural network that estimates the log-density ratio (similar to the role of Tθ in ÎMINE).
We term this the Smoothed Mutual Information “Lower-bound” Estimator (SMILE) with hyperpa-
rameter τ ; ISMILE converges to IMINE when τ → ∞. In our experiments, we consider learning
the density ratio with logistic regression, similar to the procedure in Deep InfoMax [HFLM+18].

The selection of τ a�ects the bias-variance trade-o� when estimating the partition function;
with a smaller τ , variance is reduced at the cost of (potentially) increasing bias. In the following
theorems, we analyze the bias and variance in the worst case for density ratio estimators whose
actual partition function is S for some S ∈ (0,∞).

Theorem 3. Let r(x) : X → R≥0 be any non-negative measurable function such that
∫
rdQ = S,

S ∈ (0,∞) and r(x) ∈ [0, eK ]. De�ne rτ (x) = clip(r(x), eτ , e−τ ) for �nite, non-negative τ . If

τ < K , then the bias for using rτ to estimate the partition function of r satis�es:

|EQ[r]− EQ[rτ ]| ≤ max

(
e−τ |1− Se−τ |,

∣∣∣∣1− eKe−τ + S(eK − eτ )

eK − e−τ
∣∣∣∣) ;

if τ ≥ K , then

|EQ[r]− EQ[rτ ]| ≤ e−τ (1− Se−K).

Theorem 4. The variance of the estimator EQn [rτ ] (using n samples from Q) satis�es:

Var[EQn [rτ ]] ≤ eτ − e−τ
4n

(3.18)

We defer the proofs to Appendix A.1. Theorems 3 and 4 suggest that as we decrease τ , variance
is decreased at the cost of potentially increasing bias. However, if S is close to 1, then we could use
small τ values to obtain estimators where both variance and bias are small. We further discuss the
bias-variance trade-o� for a �xed r over changes of τ in Theorem 3 and Corollary 8.

3.6 Experiments

3.6.1 Benchmarking on multivariate Gaussians

First, we evaluate the performance of MI bounds on two toy tasks detailed in [POvdO+19, BBR+18],
where the ground truth MI is tractable. The �rst task (Gaussian) is where (x,y) are drawn from a
20-d Gaussian distribution with correlation ρ, and the second task (Cubic) is the same as Gaussian
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but we apply the transformation y 7→ y3. We consider three discriminative approaches (ICPC,
INWJ, ISMILE) and one generative approach (IGM). For the discriminative approaches, we consider
the joint critic in [BBR+18] and the separate critic in [vdOLV18]. For IGM we consider invertible
�ow models [DSDB16]. We train all models for 20k iterations, with the ground truth mutual
information increasing by 2 per 4k iterations. More training details are included in Appendix B.1.11.
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Figure 3.1: Evaluation over the SMILE estimator. Performance of mutual information estimation
approaches on Gaussian (top row) and Cubic (bottom row). Left two columns are ICPC and INWJ,
next three columns are ISMILE with τ = 1.0, 5.0,∞ and the right column is IGM with �ow models.

Figure 3.1 shows the estimated mutual information over the number of iterations. In both tasks,
ICPC has high bias and INWJ has high variance when the ground truth MI is high, whereas ISMILE

has relatively low bias and low variance across di�erent architectures and tasks. Decreasing τ in the
SMILE estimator decreases variances consistently but has di�erent e�ects over bias; for example,
under the joint critic bias is higher for τ = 5.0 in Gaussian but lower in Cubic. IGM with �ow
models has the best performance on Gaussian, yet performs poorly on Cubic, illustrating the
importance of model parametrization in the generative approaches.

In Figure 3.2, we compare the bias, variance and mean squared error (MSE) of the discriminative

methods. We observe that the variance of INWJ increases exponentially with mutual information,
which is consistent with our theory in Corollary 1. On the other hand, the SMILE estimator is able
to achieve much lower variances with small τ values; in comparison the variance of SMILE when
τ = ∞ is similar to that of INWJ in Cubic. In Table B.1, we show that ISMILE can have nearly
two orders of magnitude smaller variance than INWJ while having similar bias. Therefore ISMILE

enjoys lower MSE in this benchmark MI estimation task compared to INWJ and ICPC.
1We release our code in https://github.com/ermongroup/smile-mi-estimator.

https://github.com/ermongroup/smile-mi-estimator
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Figure 3.2: Bias / Variance / MSE of various estimators on Cubic (right). We display more results
for Gaussian in Appendix B.1.1.

3.6.2 Self-consistency tests on Images

Setting 1 (baseline) Setting 2 (data processing) Setting 3 (additivity)

same image different images

Figure 3.3: Three settings in the self-consistency experiments.

Next, we perform our proposed self-consistency tests on high-dimensional images (MNIST and
CIFAR10) under three settings, where the ground truth MI is di�cult to obtain (if not impossible).
These settings are illustrated in Figure 3.3.

1. The �rst setting is where X is an image and Y is the same image where we mask the bottom
rows, leaving the top t rows fromX (t is selected before evaluation). The rationale behind this
choice of Y is twofold: 1) I(X;Y ) should be non-decreasing with t; 2) it is easier (compared
to low-d representations) to gain intuition about the amount of information remaining in Y .

2. In the second setting, X corresponds to two identical images, and Y to the top t1, t2 rows of
the two images (t1 ≥ t2); this considers the “data-processing” property.

3. In the third setting, X corresponds to two independent images, and Y to the top t rows of
both; this considers the “additivity” property.

We compare four approaches: ICPC, IMINE, ISMILE and IGM. We use the same CNN architecture
for ICPC, IMINE and ISMILE, and use VAEs [KW13] for IGM. We include more experimental details
and alternative image processing approaches in Appendix B.1.1.
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Figure 3.4: Evaluation of Î(X;Y )/Î(X;X). X is an image and Y contains the top t rows of X .

Baselines We evaluate the �rst setting with Y having varying number of rows t in Figure 3.4,
where the estimations are normalized by the estimated Î(X;X). Most methods (except for IGM)
predicts zero MI when X and Y are independent, passing the �rst self-consistency test. Moreover,
the estimated MI is non-decreasing with increasing t, but with di�erent slopes. As a reference, we
show the validation accuracy of predicting the label where only the top t rows are considered.
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Figure 3.5: Evaluation of Î([X,X]; [Y, h(Y )])/Î(X,Y ), where the ideal value is 1.

Data-processing In the second setting we set t2 = t1 − 3. Ideally, the estimator should satisfy
Î([X,X]; [Y, h(Y )])/Î(X,Y ) ≈ 1, as additional processing should not increase information. We
show the above ratio in Figure 3.5 under varying t1 values. All methods except for IMINE and IGM

performs well in both datasets; IGM performs poorly in CIFAR10 (possibly due to limited capacity
of VAE), whereas IMINE performs poorly in MNIST (possibly due to numerical stability issues).
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Figure 3.6: Evaluation of Î([X1, X2]; [Y1, Y2])/Î(X,Y ), where the ideal value is 2.

Additivity In the third setting, the estimator should double its value compared to the baseline
with the same t, i.e. Î([X1, X2]; [Y1, Y2])/Î(X,Y ) ≈ 2. Figure 3.6 shows the above ratio under
di�erent values of t. None of the discriminative approaches worked well in this case except when t
is very small, when t is large this ratio converges to 1 (possibly due to initialization and saturation
of the training objective). IGM however, performs near perfectly on this test for all values of t.

3.7 Discussion

In this chapter, we discuss generative and discriminative approaches to variational mutual infor-
mation estimation and demonstrate their limitations. We show that estimators based on INWJ

and IMINE are prone to high variances when estimating with mini-batches, inspiring our ISMILE

estimator that improves performances on benchmark tasks. However, none of the approaches are
good enough to pass the self-consistency tests. The generative approaches perform poorly when
MI is small (failing independence and data-processing tests) while the discriminative approaches
perform poorly when MI is large (failing additivity tests).

These empirical evidences suggest that optimization over these variational estimators are not
necessarily related to optimizing MI, so the empirical successes with these estimators might have
little connections to optimizing mutual information. Therefore, it would be helpful to acknowledge
these limitations and consider alternative measurements of information that are more suited for
modern machine learning applications [OLB+19, TDR+19].



Chapter 4

Representation Learning via
Classi�cation

In the previous chapter, we have discussed the limitations of existing variational mutual information
estimators and how we can improve the estimation by variance reduction. However, being able to
accurately estimate mutual information is not enough for unsupervised representation learning,
since we often would like to maximize the informativeness of the representations e�ciently.

In this chapter, we discuss how we can pose unsupervised representation learning as a multi-
label classi�cation problem. Variational mutual information (MI) estimators are widely used in
unsupervised representation learning methods such as contrastive predictive coding (CPC). A lower
bound on MI can be obtained from a multi-class classi�cation problem, where a critic attempts to
distinguish a positive sample drawn from the underlying joint distribution from (m− 1) negative
samples drawn from a suitable proposal distribution. Using this approach, MI estimates are bounded
above by logm, and could thus severely underestimate unless m is very large.

To overcome this limitation, we introduce a novel estimator based on a multi-label classi�cation
problem, where the critic needs to jointly identify multiple positive samples at the same time.
We show that using the same amount of negative samples, multi-label CPC is able to exceed the
logm bound, while still being a valid lower bound of mutual information. We demonstrate that
the proposed approach is able to lead to better mutual information estimation, gain empirical im-
provements in unsupervised representation learning, and beat a current state-of-the-art knowledge
distillation method over 10 out of 13 tasks.

This chapter was previous published as [SE20b].

34
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4.1 Introduction

Learning e�cient representations from data with minimal supervision is a critical problem in
machine learning with signi�cant practical impact [MSC+13, DCLT18, MK13, RNSS18, BMR+20].
Representations obtained using large amounts of unlabeled data can boost performance on down-
stream tasks where labeled data is scarce. This paradigm is already successful in a variety of
domains; for example, representations trained on large amounts of unlabeled images can be used
to improve performance on detection [ZZY19, HFW+19, CKNH20].

In the context of learning visual representations, contrastive objectives based on variational
mutual information (MI) estimation are among the most successful ones [vdOLV18, BBR+18,
DHFLM+18, POvdO+19, TKI19]. One such approach, named Contrastive Predictive Coding (CPC,
[vdOLV18]), obtains a lower bound to MI via a multi-class classi�cation problem. In CPC, a critic
is generally trained to distinguish a pair of representations from two augmentations of the same
image (positive), apart from (m− 1) pairs of representations from di�erent images (negative). The
representation network is then trained to increase the MI estimates given by the critic. This brings
together the two representations from the positive pair and pushes apart the two representations
from the negative pairs.

It has been empirically observed that factors leading to better MI estimates, such as training
for more iterations and increasing the complexity of the critic [CKNH20, CFGH20], can generally
result in improvements over downstream tasks. In the context of CPC, increasing the number
of negative samples per positive sample (i.e. increasing m) also helps with downstream perfor-
mance [WXYL18, HFW+19, CKNH20, TKI19]. This can be explained from a mutual information
estimation perspective that CPC estimates are upper bounded by logm, so increasing m could re-
duce bias when the actual mutual information is much higher [MC18]. However, due to constraints
over compute, memory and data, there is a limit to how many negative samples we can obtain per
positive sample.

In this chapter, we propose generalizations to CPC that can increase the logm bound without
additional computational costs, thus decreasing bias. We �rst generalize CPC through by re-
weighting the in�uence of positive and negative samples in the underlying the classi�cation
problem. This increases the logm bound and leads to bias reduction, yet the re-weighted CPC
objective is no longer guaranteed to be a lower bound to mutual information.

To this end, we introduce multi-label CPC (ML-CPC) which poses mutual information estima-
tion as a multi-label classi�cation problem. Instead of identifying one positive sample for each
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classi�cation task (as in CPC), the critic now simultaneously identi�es multiple positive samples
that come from the same batch. We prove for ML-CPC that under certain choices of the weights,
we can increase the logm bound and reduce bias, while guaranteeing that the new objective is
still lower bounded by mutual information. This provides an practical algorithm whose upper
bound is close to the theoretical upper limit by any distribution-free, high-con�dence lower bound
estimators of mutual information [MS20].

Re-weighted ML-CPC encompasses a range of mutual information lower bound estimators
with di�erent bias-variance trade-o�s, which can be chosen with minimal impact on the computa-
tional costs. We demonstrate the e�ectiveness of re-weighted ML-CPC over CPC empirically on
several tasks, including mutual information estimation, knowledge distillation and unsupervised
representation learning. In particular, ML-CPC is able to beat the current state-of-the-art method
in knowledge distillation [TKI19] on 10 out of 13 distillation tasks for CIFAR-100.

4.2 Contrastive Predictive Coding and Mutual Information

Oord et al. [vdOLV18] interpreted the CPC objective as a lower bound to MI, but only proved the
case for a lower bound approximation of CPC, where a term containing −E[log g] is replaced by
− logE[g]; so their arguments alone cannot prove that CPC is a lower bound of mutual information.
Poole et al. [POvdO+19] proved a lower bound argument for the objective where m = n and
negative samples are tied to other positive samples in the same batch. To bridge the gap between
theory (that CPC instantiates InfoMax) and practice (where negative samples can be chosen
independently from positive samples of the same batch, such as MoCo [HFW+19]), we present
another proof for the general CPC objective as presented in L(g). First, we show the following
result for variational lower bounds of KL divergences between general distributions where batches
of negative samples are used to estimate the divergence. Then, as mutual information is a KL
divergence between two speci�c distributions, the lower bound argument for CPC simply follows.

Theorem 5. For all probability measures P,Q over sample space X such that P � Q, the following

holds for all functions r : X → R+ and integersm ≥ 2:

DKL(P‖Q) ≥ Ex∼P,y1:m−1∼Qm−1

[
log

m · r(x)

r(x) +
∑m−1

i=1 r(yi)

]
. (4.1)

Proof. In Appendix A.2, using the variational representations of f -divergences [NWJ08] and Prop. 6.
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The argument about CPC being a lower bound to MI is simply a corollary of the above statement
where P is p(x,y) (joint) and Q is p(x)p(y) (product of marginals); we state the claim below.

Corollary 2. ∀n ≥ 1,m ≥ 2, ∀g : X × Y → R+, the following is true: L(g) ≤ I(X;Y ).

Therefore, one can train g and h to maximize L(g) (recall that L depends on h via y = h(x)),
which is guaranteed to be lower than I(X;Y ) in expectation.

CPC is an estimator with high bias For �nitem, since g(xi,yi) appears in both the numerator
and denominator of Equation 2.16 and g is positive, the density ratio estimates can be no larger
than m, and the value of L(g) is thus upper bounded by logm [vdOLV18]. While this is acceptable
for certain low dimensional scenarios, this can lead to high-bias if the true mutual information is
much larger than logm. In fact, the required m can be unacceptable in high dimensions since MI
can scale linearly with dimension, which means an exponential number of negative samples are
needed to achieve low bias.

For example, ifX and Y are 1000-dimensional random variables where the marginal distribution
for each dimension is standard Gaussian, and for each dimension d, Xd and Yd has a correlation of
0.2, then the mutual information I(X;Y ) is around 20.5, which means that m has to be greater
than 4 × 108 in order for CPC estimates to approach this value. In comparison, state-of-the-art
image representation learning methods use am that is around 65536 and representation dimensions
between 128 to 2048 [WXYL18, HFW+19, CKNH20] due to batch size and memory limitations, as
one would need a sizeable batch of positive samples in order to apply batch normalization [IS15].

4.2.1 Re-weighted Contrastive Predictive Coding

Under the computational limitations imposed by m (i.e., we cannot obtain too many negative
samples per positive sample), we wish to develop generalizations to CPC that reduce bias while
still being lower bounds to the mutual information. We do not consider other types of estimators
such as MINE [BBR+18] or NWJ [NWJ08] because they would exhibit high variance on the order
of O(eI(X;Y )) [SE19b], and thus are much less stable to optimize.

One possible approach is to decrease the weights of the positive sample when calculating the
sum in the denominator; this leads to the following objective, called α-CPC:

Lα(g) := E

[
1

n

n∑
i=1

log
m · g(xi,yi)

αg(xi,yi) + m−α
m−1

∑m−1
j=1 g(xi,yi,j)

]
(4.2)
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where the positive sample is weighted by α and negative samples are weighted by m−α
m−1 . The

purpose of adding weights to negative samples is to make sure the the weights sum to m, like in
the original case where each sample has weight 1 and there are m samples in total. Clearly, the
original CPC objective is a special case when α = 1.

On the one hand, Lα(g) is now upper bounded by log m
α , which is larger than logm when

α ∈ (0, 1). Thus, α-CPC has the potential to reduce bias when logm is much smaller than I(X;Y ).
On the other hand, when we set a smaller α, the variance of the estimator becomes larger, and the
objective Lα(g) becomes more di�cult to optimize [HLLT16, HLCT19]. Therefore, selecting an
appropriate α to balance the bias-variance trade-o� is helpful for optimization of the objective in
practice.

However, it is now possible for Lα(g) to be larger than I(X;Y ) as the number of classes
m grows to in�nity, so optimizing Lα(g) does not necessarily recover a lower bound to mutual
information. We illustrate this via the following example (more details in Appendix B.2.2).

Example 1. LetX,Y be two binary r.v.s such that Pr(X = 1, Y = 1) = Pr(X = 0, Y = 0) = 0.5.

Then I(X;Y ) = log 2 ≈ 0.69. However, when α = 0.5 and n = m = 3, we can analytically

compute Lα(g) ≈ 0.72 ≥ I(X;Y ) for g(x, y) = 1 if x = y and near 0 otherwise.

4.3 Multi-label Contrastive Predictive Coding

While α-CPC could be useful empirically, we lack a principled way of selecting proper values of
α as Lα(g) may no longer be a lower bound to mutual information. In the following sections,
we propose an approach that allows us to achieve both, i.e., for all α in a certain range (that only
depends on n and m), we can achieve an upper bound of log m

α while ensuring that the objective is
still a lower bound on mutual information. This allows us to select di�erent values of α to re�ect
di�erent preferences over bias and variance, all while keeping the computational cost identical.

We consider solving a “nm-class, n-label” classi�cation problem, where given n positive samples
and n(m− 1) negative samples yj,k ∼ p(y), we wish to jointly identify the top-n samples that are
most likely to be the positive ones. Concretely, this has the following objective function:

J(g) := E

[
1

n

n∑
i=1

log
nm · g(xi,yi)∑n

j=1 g(xj ,yj) +
∑n

j=1

∑m−1
k=1 g(xj ,yj,k)

]
(4.3)

where the expectation is taken over the n positive samples (xi,yi) ∼ p(x,y) for i ∈ [n] and
the n(m − 1) negative samples yj,k ∼ p(y) for j ∈ [n], k ∈ [m − 1]. We call this multi-label
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contrastive predictive coding (ML-CPC), since the classi�er now needs to predict n positive labels
from nm options at the same time, instead of 1 positive label from m options as in traditional CPC
(performed for n times for a batch size of n).

Distinctions fromCPC Despite its similarity compared to CPC (both are based on classi�cation),
we note that the multi-label perspective is fundamentally di�erent from the CPC paradigm in three
aspects, and cannot be treated as simply increasing the number of negative samples.

1. The ML-CPC objective value depends on the batch size n, whereas the CPC objective does
not.

2. In CPC the positive pair and negative pairs share a same element (xi in equation 2.16 where
the positive sample is (xi,yi)), whereas in ML-CPC the negative pairs no longer have such
restrictions; this could be useful for smaller datasetsD when the number of possible negative
pairs increases from O(|D|) to O(|D|2).

3. The optimal critic for CPC is g? = c(x)·p(x,y)/(p(x)p(y)), where c is any positive function
of x [MC18]. In ML-CPC, di�erent x values are tied within the same batch, so the optimal
critic for ML-CPC is g? = c · p(x,y)/(p(x)p(y)), where c is a positive constant. As a result,
ML-CPC reduces the amount of optimal solutions, and forces the similarity of any positive
pair to be higher than that of any negative pair, unlike CPC where the positive pair only
needs to have higher similarity than any negative pairs with the same x.

Computational cost of ML-CPC To compute CPC with a batch size of n, one would need
nm critic evaluations and compute n sums in the denominator, each over a di�erent set of m
evaluations. To compute ML-CPC, one needs nm critic evaluations, and compute 1 sum over all nm
evaluations. Therefore, ML-CPC has almost the same computational cost compared to CPC which
is O(mn). We perform a similar analysis in Appendix A.2 to show that evaluating the gradients of
the objectives also has similar costs, so ML-CPC is computationally as e�cient as CPC.

4.3.1 Re-weighted Multi-label Contrastive Predictive Coding

Similar to α-CPC, we can modify the multi-label objective J(g) by re-weighting the critic predic-
tions, which results in the following objective called α-ML-CPC:

Jα(g) := E

[
1

n

n∑
i=1

log
nm · g(xi,yi)

α
∑n

j=1 g(xj ,yj) + m−α
m−1

∑n
j=1

∑m−1
k=1 g(xj ,yj,k)

]
(4.4)
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For α ∈ (0, 1), we down-weight the positive critic outputs by α and up-weight the negative critic
outputs by m−α

m−1 (similar to α-CPC). Setting a smaller α has the potential to reduce bias, since the
upper bound of logm is changed to log m

α , which is larger when α ∈ (0, 1). In contrast to α-CPC,
Jα(g) is now guaranteed to be a lower bound of mutual information for a wide range of α, as
we show in the following statements. Similar to the case of CPC, we �rst show a more general
argument, for which the weighted ML-CPC is a special case.

Theorem 6. For all probability measures P,Q over sample space X such that P � Q, the following

holds for all functions r : X → R+, integers n ≥ 1,m ≥ 2, and real numbers α ∈ [ m
n(m−1)+1 , 1]:

DKL(P‖Q) ≥ Ex1:n∼Pn,yi,1:m−1∼Qm−1

[
1

n

n∑
i=1

log
mn · r(xi)

α
∑n

j=1 r(xj) + m−α
m−1

∑m−1
k=1 r(yj,k)

]
.

(4.5)

Proof. In Appendix A.2, using the variational representations of f -divergences [NWJ08] and Prop. 7.

The above theorem extends existing variational lower bound estimators of KL divergences (that
are generally interpreted as binary classi�cation [SSK12, NWJ08]) into a family of lower bounds
that can be interpreted as multi-label classi�cation. The argument about re-weighted ML-CPC
being a lower bound to MI is simply a corollary where P is p(x,y) and Q is p(x)p(y); we state
the claim below.

Corollary 3. ∀n ≥ 1,m ≥ 2, de�ne αm,n = m
n(m−1)+1 . If α ∈ [αm,n, 1], then ∀g : X × Y → R+,

Jα(g) ≤ I(X;Y ) (4.6)

The above theorem shows that for an appropriate range of α values, the objective Jα(g) is still
guaranteed to be a variational lower bound to mutual information, like the original CPC objective.
Selecting α within this range results in estimators with di�erent bias-variance trade-o�s. Here, a
smaller α could lead to low-bias high-variance estimates; this achieves a similar e�ect to increasing
the number of classes m to nearly m/α, but without the actual additional computational costs that
comes with obtaining more negative samples in CPC.

Illustrative example We consider the case of X,Y being binary and equal random variables
in Example 1, where I(X;Y ) = log 2 ≈ 0.69, the optimal critic g is known, and both Lα(g) and
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Figure 4.1: MI estimates with CPC and ML-CPC under di�erent α.
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Figure 4.2: Bias-variance trade-o�s for di�erentm. Lower is better.

Jα(g) can be computed in closed-form for any α and g in O(m) time (details in Appendix B.2.2).
We plot the CPC (equation 4.2) and ML-CPC (equation 4.4) objectives with di�erent choices of α
and m in Figure 4.1. The estimates of ML-CPC when α ≥ αm,n are lower bounds to the ground
truth MI, which indeed aligns with our theory.

Furthermore, in Figure 4.2 we illustrate the bias-variance trade-o�s for CPC and αm,n-ML-CPC
as we vary the number of classes m (for simplicity, we choose n = m). Despite having slightly
higher variance in the estimates, αm,n-ML-CPC has signi�cantly less bias than CPC, which suggests
that it is helpful in cases where lower bias is preferable than lower variance. In practice, the user
could select di�erent values of α to indicate the desired trade-o�, all without having to change the
number of negative samples and increase computational costs.

We include the pseudo-code and a PyTorch implementation to α-ML-CPC in Appendix B.2.1.

4.4 Related Work

Contrastive methods for representation learning The general principle of contrastive meth-
ods for representation learning encourages representations to be closer between “positive” pairs
and further between “negative” pairs, which has been applied to learning representations in vari-
ous domains such as images [HRD+19, WXYL18, HFW+19, CKNH20], words [MSC+13, DCLT18],
graphs [VFH+18] and videos [HXZ19]. Commonly used objectives include the logistic loss [MSC+13],
margin triplet loss [SKP15], the noise contrastive estimation loss [GH12] and other objectives based
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on variational lower bounds of mutual information, such as MINE [BBR+18] and CPC [vdOLV18].
CPC-based approaches have gained interest due to its superior performance in downstream tasks
compared to other losses such as the logistic and margin loss [CKNH20].

Variational mutual information estimators Estimating mutual information from samples is
challenging [MS20, XZS+20]. Most variational approaches to mutual information estimation are
based on the Fenchel dual representation of f -divergences [NWJ08, SE19a], where a critic function
is trained to learn the density ratio p(x,y)/(p(x)p(y)). These approaches mostly vary in terms of
how the critics are modeled and optimized [BA03, POvdO+19], and exhibit di�erent bias-variance
trade-o�s from these choices.

CPC would tend to underestimate the density ratio (since it is capped at m) and generally
requiresO(eI(X;Y )) samples to achieve low bias; MINE [BBR+18] (based on the Donsker-Varadhan
inequality [DV75]) is a biased estimator and requires O(eI(X;Y )) samples to achieve low vari-
ance [SE19b, SE19a]. Poole et al. [POvdO+19] proposed an estimator that interpolates between two
types of estimators, allowing for certain bias-variance trade-o�s; this is relevant to our proposed
re-weighted CPC in the sense that positive samples are down-weighted, but an additional baseline
model is required during training. Through ML-CPC, we introduce a family of unbiased mutual
information lower bound estimators, and re�ect a wide range of bias-variance trade-o�s without
using more negative samples.

Relevance to the limitations of mutual information lower bound estimators Further-
more, we note that ML-CPC is upper bounded by log(n(m− 1) + 1) for the smallest possible α,
which appears to be very close to (but smaller than) the general upper limit of O(log nm) that can
be achieved by any distribution-free high-con�dence lower bound (namely, estimates from samples
are lower bounds to the true mutual infomation with high probability) on mutual information for
nm samples [MS20]. However, we note that the assumptions in [MS20] are slightly di�erent to
our settings, in the sense that they assumed complete access to the distribution p(x,y) and only
required samples from p(x)p(y), whereas we have to estimate p(x,y) from the samples as well;
and the amount of samples we obtain from p(x)p(y) is n(m− 1) instead of nm. We hypothesize
that we can reach the theoretical limit with a method derived from ML-CPC, but leave it as an
interesting future direction.

Re-weighted softmax loss Generalizations to the softmax loss have been proposed in which
di�erent weights are assigned to di�erent classes or samples [LWYY16, LLW17, WLLC18], which
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are commonly used with regularization [BL18]. When the dataset has extremely imbalanced classes,
higher weights are given to classes with less frequency [HLLT16, HLCT19, WRH17] or classes
with less e�ective samples [CJL+19]. Cao et al. [CWG+19] investigate re-weighting approaches
that encourages large margins to the decision boundary for minority classes; such a context is
also studied for detection [LKG19] and segmentation [KHZ+19] where class imbalance exists. Our
work introduce re-weighting approaches to the context of unsupervised representation learning
(where class labels do not exist in the traditional sense), where we aim for �exible bias-variance
trade-o�s in contrastive mutual information estimators.

4.5 Experiments

We evaluate our proposed methods on mutual information estimation, knowledge distillation
and unsupervised representation learning. To ensure fair comparisons are made, we only make

adjustments to the training objective, and keep the remaining experimental setup identical to that of

the baselines. We describe details to the experimental setup in Appendix B.2.2. Our code is available
at https://github.com/jiamings/ml-cpc.
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Figure 4.3: Mutual information estimation with CPC and ML-CPC, with di�erent choices of α.

4.5.1 Mutual Information Estimation

Setup We �rst consider mutual information estimation between two correlated Gaussians of 20
dimensions, following the setup in [POvdO+19, SE19b] where the ground truth mutual information
is known and increases by 2 every 4k iterations, for a total of 20k iterations. We evaluate CPC and

https://github.com/jiamings/ml-cpc
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ML-CPC with di�erent choices of α (ranging from 1.0 to 0.0001, which might not guarantee that
they are lower bounds to mutual information) under two types of critic, named joint [BBR+18]
and separable [vdOLV18]. We use m = n = 128 in our experiments.

Results We illustrate the estimates and the ground truth MI in Figure 4.3. Both CPC and ML-CPC
estimates are bounded by logm when α = 1, which is no longer the case when we set smaller
values of α; however, as we decrease α, CPC estimates are no longer guaranteed to be lower bounds
to mutual information, whereas ML-CPC estimates still provide lower bound estimates in general.
Moreover, a reduction in α for ML-CPC reduces bias at the cost of increasing variance, as the
problem becomes more di�cult with re-weighting. The time to compute 200 updates on a Nvidia
1080 Ti GPU with the a PyTorch implementation is 1.15± 0.06 seconds with CPC and 1.14± 0.04

seconds with ML-CPC, so the computational costs are indeed near identical.

4.5.2 Knowledge Distillation

Setup We apply re-weighted CPC and ML-CPC to knowledge distillation (KD, [HVD15]), in
which one neural network model (teacher) transfers its knowledge to another model (student,
typically smaller) so that the student’s performance is higher than training from labels alone.
Contrastive representation distillation (CRD, [TKI19]) is a state-of-the-art method that regularizes
the student model so that its features have higher mutual information with that of the teacher;
CRD is implemented via a type of noise contrastive estimation objective [GH12]. We replace this
objective with CPC and ML-CPC, using di�erent choices of α that are �xed throughout training,
and keeping the remaining hyperparameters identical to the CRD ones in [TKI19]. Two baselines are
considered: the original KD objective in [HVD15] and the state-of-the-art CRD objective in [TKI19],
since other baselines [KKBZ19, AHD+19, HW17, KPK18] are shown to have inferior performance
in general.

Results Following the procedure in [TKI19], we evaluate over 13 di�erent student-teacher pairs
on CIFAR-100 [KH+09]. The student and teacher have the same type of architecture in 7 cases
and di�erent types in 6 cases. We report top-1 test accuracy in Table 4.1 (same type) and Table 4.2
(di�erent types), where each case is the mean evaluation from 3 random seeds. We omit the standard
deviation across di�erent random seeds of each setup to �t the table in the paper, but we note
that deviation among di�erent random seeds is fairly small (at around 0.05 to 0.1 for most cases).
While CPC and ML-CPC are generally inferior to that of CRD when α = 1.0 (this aligns with the
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Figure 4.4: Ablation studies for knowledge distillation with CPC and ML-CPC at di�erent
values of α. Left: student and teacher are of the same type. Right: student and teacher are from
di�erent types.

observation in [TKI19]), they outperform CRD in 10 out of 13 cases when a smaller α is selected.
To demonstrate the e�ect of improved performance of smaller α, we evaluate average top-

1 accuracies with α ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1.0} in Figure 4.4. Both CPC and ML-CPC are
generally inferior to CRD when α = 1.0 or 0.5, but as we select smaller values of α, they become
superior to CRD and reaches the highest values at around 0.01 to 0.05, with ML-CPC being slightly
better. Moreover, n = 64,m = 16384 so αm,n ≈ 0.015, which achieves the lowest bias while
ensuring ML-CPC to be a lower bound to MI. Thus this observation aligns with our claims on αm,n
in Theorem 3.

Table 4.1: Top-1 test accuracy (%) of students networks on CIFAR100 where the student and teacher
networks are of the same type. (↑) and (↓) denotes superior and inferior performance relative to
CRD. Each result is the mean of 3 random runs. Lα and Jα denote α-CPC and α-ML-CPC.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94

L1.0 75.42 (↓) 74.16 (↑) 71.32 (↑) 71.39 (↓) 73.57 (↑) 75.50 (↓) 73.60 (↓)
L0.1 75.69 (↑) 74.17 (↑) 71.48 (↑) 71.38 (↓) 73.66 (↑) 75.41 (↓) 73.61 (↓)
J1.0 75.39 (↓) 74.18 (↑) 71.28 (↑) 71.28 (↓) 73.58 (↑) 75.32 (↓) 73.67 (↓)
J0.05 75.64 (↑) 74.27 (↑) 71.33 (↑) 71.24 (↓) 73.57 (↑) 75.50 (↓) 74.01 (↑)
J0.01 75.83 (↑) 74.24 (↑) 71.50 (↑) 71.27 (↓) 73.90 (↑) 75.37 (↓) 73.95 (↑)
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Table 4.2: Top-1 test accuracy (%) of students networks on CIFAR100 where the student and teacher
networks are from di�erent types. (↑) and (↓) denotes superior and inferior performance relative to
CRD. Each result is the mean of 3 random runs. Lα and Jα denote α-CPC and α-ML-CPC.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 Shu�eNetV1 Shu�eNetV2 Shu�eNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD 67.37 67.35 73.81 74.07 74.45 74.83
CRD 69.73 69.11 74.30 75.11 75.65 76.05

L1.0 69.24 (↓) 69.02 (↓) 73.66 (↓) 75.00 (↓) 75.93 (↑) 75.72 (↓)
L0.1 69.26 (↓) 69.33 (↑) 74.24 (↓) 75.34 (↑) 76.01 (↑) 76.12 (↑)
J1.0 68.92 (↓) 68.80 (↓) 73.65 (↓) 75.39 (↑) 75.88 (↑) 75.70 (↓)
J0.05 69.25 (↓) 70.04 (↑) 74.84 (↑) 75.51 (↑) 76.24 (↑) 76.03 (↑)
J0.01 69.25 (↓) 69.90 (↑) 74.81 (↑) 75.47 (↑) 76.04 (↑) 76.19 (↑)

4.5.3 Representation Learning

Setup Finally, we consider ML-CPC for unsupervised representation learning as a replacement to
CPC. We follow the experiment procedures in MoCo-v2 [CFGH20] (which used the CPC objective),
where negative samples are obtained from a key encoder that updates more slowly than the
representation network. We use the “linear evaluation protocol” where the learned representations
are evaluated via the test top-1 accuracy when a linear classi�er is trained to predict labels from
representations. Di�erent from knowledge distillation, we do not have labels and �xed teacher
representations, so the problem becomes much more di�cult and using small values of α alone
will lead to high variance in initial estimates which could hinder the �nal performance. To this
end, we use a curriculum learning [BLCW09] approach where we select α values from high to
low throughout training: higher α has higher bias, lower variance and easier to learn, whereas
lower α has lower bias, higher variance and harder to learn. For ML-CPC, we consider 4 types of
geometrically decreasing schedules for α: �xed at 1.0; from 2.0 to 0.5; from 5.0 to 2.0; and from
10.0 to 0.1; so α = 1.0 for all cases when we reached half of the training epochs. We use the same
values for other hyperparameters as those used in the MoCo-v2 CPC baseline (more details in
Appendix B.2.2).

Results We show the top-1 accuracy of the learned representations under the linear evaluation
protocol in Table 4.3 for CIFAR10 and CIFAR100. While the original ML-CPC objective (denoted
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as J1.0 → J1.0) already outperforms the CPC baseline in most cases, we observe that using a
curriculum from easy to hard objective has the potential to further improve performance of the
representations. Notably, the J10.0 → J0.1 schedule improves the performance on both datasets by
almost 2.5 percent when trained for 200 epochs, which demonstrates its e�ectiveness when the
number of epochs used during training is limited.

Table 4.3: Top-1 accuracy of unsupervised representation learning.

(a) CIFAR-10

Epochs 200 500 1000

L1.0 83.28 89.31 91.20

J1.0 → J1.0 83.61 (↑) 89.43 (↑) 91.48 (↑)
J2.0 → J0.5 84.31 (↑) 89.47 (↑) 91.43 (↑)
J5.0 → J0.2 85.52 (↑) 89.85 (↑) 91.50 (↑)
J10.0 → J0.1 86.16 (↑) 89.49 (↑) 91.86 (↑)

(b) CIFAR-100

Epochs 200 500 1000

L1.0 61.42 67.72 69.63

J1.0 → J1.0 61.80 (↑) 67.68 (↓) 70.85 (↑)
J2.0 → J0.5 62.92 (↑) 68.01 (↑) 70.22 (↑)
J5.0 → J0.2 63.58 (↑) 68.04 (↑) 70.07 (↑)
J10.0 → J0.1 64.05 (↑) 67.94 (↑) 70.03 (↑)

In Table 4.4, we include additional results for ImageNet under a compute-constrained scenario,
where the representations are trained for only 30 epochs on a ResNet-18 architecture. Similar to
the observations in CIFAR-10, we observe improvements in terms of linear classi�cation accuracy
of the learned representations. This demonstrates that the curriculum learning approach (speci�c
to ML-CPC with re-weighting schedules, where the objective remains a lower bound to mutual
information) could be useful to unsupervised representation learning in general.

4.6 Discussion

In this chapter, we proposed multi-label contrastive predictive coding for representation learning,
which provides a generalization to contrastive predictive coding via multi-label classi�cation. Re-
weighted ML-CPC is able to enjoy less bias while being a lower bound to mutual information. Our
upper bounds for the smallest α is close to the theoretical limit [MS20] of any distribution-free high-
con�dence lower bound on mutual information estimation. We demonstrate the e�ectiveness of

Table 4.4: ImageNet representation learning for 30 epochs.

Objective L1.0 J1.0 → J1.0 J2.0 → J0.5 J5.0 → J0.2 J10.0 → J0.1

Top1 43.45 43.24 (↓) 43.52 (↑) 43.86 (↑) 43.81 (↑)
Top5 67.42 67.43 (↑) 67.82 (↑) 67.67 (↑) 67.71 (↑)
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ML-CPC on mutual information, knowledge distillation and unsupervised representation learning.
It would be interesting to further apply this method to other application domains, investigate al-

ternative methods to control the re-weighting procedure (such as using angular margins [LWYY16]),
and develop more principled approaches towards curriculum learning for unsupervised represen-
tation learning. From a theoretical standpoint, it is also interesting to formally investigate the
bias-variance trade-o� of ML-CPC, and see whether simple modi�cations to ML-CPC based on a
slightly di�erent assumption over p(x,y) could approach the theoretical limit by McAllester and
Stratos [MS20].



Chapter 5

Fair Representation Learning via
Regression

In the previous chapter, our goal was to learn compressed representations of the data that are as
informative as possible. However, in many real-world applications, raw data often contain certain
sensitive information, such as age and gender. If we wish to protect the user from data misuse, then
removing the sensitive information alone would not be enough: one can still infer the sensitive
attributes from other features (for example, one’s favorite activity could be correlated to their
gender). This motivates us to produce not only informative representations, but also “fair” ones
that reduces the undesirable information about sensitive information.

In this chapter, we propose an information-theoretically motivated objective for learning maxi-
mally expressive fair representations. We unify a range of existing approaches by showing they
optimize approximations to the Lagrangian dual of our objective. These existing approaches may
learn somewhat expressive and fair representations, but users wanting to control the fairness of
representations must tune the expressiveness-fairness trade-o� over many runs and will never
know whether they have obtained the maximally expressive representations under certain fair-
ness constraints. We are the �rst to provide user control over the fairness of representations
through a user-speci�able limit on unfairness. Through a dual optimization method (optimizing
the model as well as the expressiveness-fairness trade-o�), we obtain representations achieving
high expressiveness while satisfying the user-speci�ed limits on unfairness.

This chapter was previous published as [SKG+19]. Pratyusha Kalluri, Aditya Grover and
Shengjia Zhao contributed to the contents of this chapter. My contributions are conceiving the idea,
implementing the algorithm, executing the experiments and writing the chapter. Other coauthors
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helped with discussions and writing.

5.1 Introduction

Statistical learning systems are increasingly being used to assess individuals, in�uencing conse-
quential decisions such as bank loans, college admissions, and criminal sentences. This yields a
growing demand for systems guaranteed to output decisions that are fair with respect to sensitive
attributes such as gender, race, and disability.

In the typical classi�cation and regression settings with fairness and privacy constraints, one
is concerned about performing a single, speci�c task. However, situations arise where a data
owner needs to release data to downstream users without prior knowledge of the tasks that will
be performed [MCPZ18]. In such cases, it is crucial to �nd representations of the data that can be
used on a wide variety of tasks while preserving fairness [CWRV17].

This gives rise to two desiderata. On the one hand, the representations need to be expressive, so
that they can be used e�ectively for as many tasks as possible. On the other hand, the representations
also need to satisfy certain fairness constraints to protect sensitive attributes. Further, many notions
of fairness are possible, and it may not be possible to simultaneously satisfy all of them [KMR16,
Cho17]. Therefore, the ability to e�ectively trade o� multiple notions of fairness is crucial to fair
representation learning.

To this end, we present an information theoretically motivated constrained optimization frame-
work (Section 5.2). The goal is to maximize the expressiveness of representations while satisfy-
ing certain fairness constraints. We represent expressiveness as well as three dominant notions
of fairness (demographic parity [ZWS+13], equalized odds, equalized opportunity [HPS16]) in
terms of mutual information, obtain tractable upper/lower bounds of these mutual information
objectives, and connect them with existing objectives such as maximum likelihood, adversarial
training [GPAM+14], and variational autoencoders [KW13, RM15].

As we demonstrate in Section 5.3, this serves as a unifying framework for existing work [ZWS+13,
LSL+15, ES15, MCPZ18] on learning fair representations. A range of existing approaches to learning
fair representations, which do not draw connections to information theory, optimize an approx-
imation of the Lagrangian dual of our objective with �xed values of the Lagrange multipliers.
These thus require the user to obtain di�erent representations for di�erent notions of fairness as
in [MCPZ18].

Instead, we consider a dual optimization approach (Section 5.4), in which we optimize the model
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as well as the Lagrange multipliers during training [ZSE18b], thereby also learning the trade-o�
between expressiveness and fairness. We further show that our proposed framework is strongly
convex in distribution space.

Our work is the �rst to provide direct user control over the fairness of representations through
fairness constraints that are interpretable by non-expert users. Empirical results in Section 5.5
demonstrate that our notions of expressiveness and fairness based on mutual information align well
with existing de�nitions, our method encourages representations that satisfy the fairness constraints
while being more expressive, and that our method is able to balance the trade-o� between multiple
notions of fairness with a single representation and a signi�cantly lower computational cost.

5.2 An Information-Theoretic Objective for Controllable Fair Rep-

resentations

We are given a dataset Du = {(xi,ui)}Mi=1 containing pairs of observations x ∈ X and sensitive
attributes u ∈ U . We assume the dataset is sampled i.i.d. from an unknown data distribution
q(x,u). Our goal is to transform each data point (x,u) into a new representation z ∈ Z that is
(1) transferable, i.e., it can be used in place of (x,u) by multiple unknown vendors on a variety
of downstream tasks, and (2) fair, i.e., the sensitive attributes u are protected. For conciseness,
we focus on the demographic parity notion of fairness [CKP09, Zli15, ZVRG15], which requires
the decisions made by a classi�er over z to be independent of the sensitive attributes u. We
discuss in Appendix B.3.3 how our approach can be extended to control other notions of fairness
simultaneously, such as the equalized odds and equalized opportunity notions of fairness [HPS16].

We assume the representations z ∈ Z of (x,u) are obtained by sampling from a conditional
probability distribution qφ(z|x,u) parameterized by φ ∈ Φ. The joint distribution of (x, z,u) is
then given by qφ(x, z,u) = q(x,u)qφ(z|x,u). We formally express our desiderata for learning a
controllable fair representation z through the concept of mutual information:

1. Fairness: z should have low mutual information with the sensitive attributes u.

2. Expressiveness: z should have high mutual information with the observations x, condi-
tioned on u (in expectation over possible values of u).

The �rst condition encourages z to be independent of u; if this is indeed the case, the downstream
vendor cannot learn a classi�er over the representations z that discriminates based on u. Intuitively,
the mutual information Iq(z,u) is related to the optimal predictor of u given z. If Iq(z,u) is zero,
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then no such predictor can perform better than chance; if Iq(z,u) is large, vendors in downstream
tasks could utilize z to predict the sensitive attributes u and make unfair decisions.

The second condition encourages z to contain as much information as possible from x condi-
tioned on the knowledge of u. By conditioning on u, we ensure we do not encourage information
in x that is correlated with u to leak into z. The two desiderata allow z to encode non-sensitive
information from x (expressiveness) while excluding information in u (fairness).

Our goal is to choose parameters φ ∈ Φ for qφ(z|x,u) that meet both these criteria1. Because
we wish to ensure our representations satisfy fairness constraints even at the cost of using less
expressive z, we synthesize the two desiderata into the following constrained optimization problem:

max
φ∈Φ

Iq(x; z|u) s.t. Iq(z;u) < ε (5.1)

where Iq(x; z|u) denotes the mutual information of x and z conditioned on u, Iq(z;u) denotes
mutual information between z and u, and the hyperparameter ε > 0 controls the maximum amount
of mutual information allowed between z and u. The motivation of our “hard” constraint on Iq(z;u)

– as opposed to a “soft” regularization term – is that even at the cost of learning less expressive z

and losing some predictive power, we view as important ensuring that our representations are fair
to the extent dictated by ε.

Both mutual information terms in Equation 5.1 are di�cult to compute and optimize. In
particular, the optimization objective in Equation 5.1 can be expressed as the following expectation:

Iq(x; z|u) = Eqφ(x,z,u)[log qφ(x, z|u)− log q(x|u)− log qφ(z|u)]

while the constraint on Iq(z;u) involves the following expectation:

Iq(z;u) = Eqφ(z,u)[log qφ(z|u)− log qφ(z)]

Even though qφ(z|x,u) is known analytically and assumed to be easy to evaluate, both mutual
information terms are di�cult to estimate and optimize.

To o�set the challenge in estimating mutual information, we introduce upper and lower bounds
with tractable Monte Carlo gradient estimates. We introduce the following lemmas, with the proofs
provided in Appendix A.3. We note that similar bounds have been proposed in [BA03, AFDM16,
ZSE17a, ZSE18b, GE19].

1Simply ignoring u as an input is insu�cient, as x may still contain information about u.
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5.2.1 Tractable Lower Bound for Iq(x; z|u)

We begin with a (variational) lower bound on the objective function Iq(x; z|u) related to expres-
siveness which we would like to maximize in Equation 5.1.

Lemma 6. For any conditional distribution pθ(x|z,u) (parametrized by θ)

Iq(x; z|u) = Eqφ(x,z,u)[log pθ(x|z,u)] +Hq(x|u) + Eqφ(z,u)DKL(qφ(x|z,u)‖pθ(x|z,u))

where Hq(x|u) is the entropy of x conditioned on u, and DKL denotes KL-divergence.

Since entropy and KL divergence are non-negative, the above lemma implies the following
lower bound:

Iq(x; z|u) ≥ Eqφ(x,z,u)[log pθ(x|z,u)] := Lr. (5.2)

5.2.2 Tractable Upper Bound for Iq(z;u)

Next, we provide an upper bound for the constraint term Iq(z;u) that speci�es the limit on
unfairness. In order to satisfy this fairness constraint, we wish to implicitly minimize this term.

Lemma 7. For any distribution p(z), we have:

Iq(z;u) ≤ Iq(z;x,u) = Eq(x,u)DKL(qφ(z|x,u)‖p(z))−DKL(qφ(z)‖p(z)). (5.3)

Again, using the non-negativity of KL divergence, we obtain the following upper bound:

Iq(z;u) ≤ Eq(x,u)DKL(qφ(z|x,u)‖p(z)) := C1. (5.4)

In summary, Equation 5.2 and Equation 5.4 imply that we can compute tractable Monte Carlo
estimates for the lower and upper bounds to Iq(x; z|u) and Iq(z;u) respectively, as long as the
variational distributions p(x|z,u) and p(z) can be evaluated tractably, e.g., Bernoulli and Gaussian
distributions. Note that the distribution qφ(z|x,u) is assumed to be tractable.

5.2.3 A Tighter Upper Bound to Iq(z,u) via Adversarial Training

It would be tempting to use C1, the tractable upper bound from Equation 5.4, as a replacement for
Iq(z,u) in the constraint of Equation 5.1. However, note from Equation 5.3 that C1 is also an upper



CHAPTER 5. FAIR REPRESENTATION LEARNING VIA REGRESSION 54

bound to Iq(x, z|u), which is the objective function (expressiveness) we would like to maximize
in Equation 5.1. If this was constrained too tightly, we would constrain the expressiveness of our
learned representations. Therefore, we introduce a tighter bound via the following lemma.

Lemma 8. For any distribution p(u), we have:

Iq(z;u) = Eqφ(z)DKL(qφ(u|z)‖p(u))−DKL(q(u)‖p(u)). (5.5)

Using the non-negativity of KL divergence as before, we obtain the following upper bound on
Iq(z;u):

Iq(z;u) ≤ Eqφ(z)DKL(qφ(u|z)‖p(u)) := Ĉ2. (5.6)

As u is typically low-dimensional (e.g., a binary variable, as in [HPS16, ZWS+13]), we can
choose p(u) in Equation 5.5 to be a kernel density estimate based on the dataset D. By making
DKL(q(u)‖p(u)) as small as possible, our upper bound Ĉ2 gets closer to Iq(z,u).

While Ĉ2 is a valid upper bound to Iq(z;u), the term qφ(u|z) appearing in Ĉ2 is intractable
to evaluate, requiring an integration over x. Our solution is to approximate qφ(u|z) with a
parametrized model pψ(u|z) with parameters ψ ∈ Ψ obtained via the following objective:

min
ψ

Eqφ(z)DKL(qφ(u|z)‖pψ(u|z)). (5.7)

Note that the above objective corresponds to maximum likelihood prediction with inputs z and
labels u using pψ(u|z). In contrast to qφ(u|z), the distribution pψ(u|z) is tractable and implies the
following lower bound to Ĉ2:

Eqφ(z,u)[log pψ(u|z)− log p(u)] = Eqφ(z)[DKL(qφ(u|z)‖p(u))−DKL(qφ(u|z)‖pψ(u|z))]

≤ Eqφ(z)DKL(qφ(u|z)‖p(u)) = Ĉ2.

It follows that we can approximate Iq(z;u) through the following adversarial training objective:

min
φ

max
ψ

Eqφ(z,u)[log pψ(u|z)− log p(u)] (5.8)

Here, the goal of the adversary pψ is to minimize the di�erence between the tractable approximation
given by Eqφ(z,u)[log pψ(u|z)− log p(u)] and the intractable true upper bound Ĉ2. We summarize
this observation in the following result:
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Corollary 4. If DKL(qφ(u|z)‖pψ(u|z)) ≤ `, then

Iq(z;u) ≤ Eqφ(z,u)[log pψ(u|z)− log p(u)]−DKL(q(u)‖p(u)) + `

for any distribution p(u).

It immediately follows that when `→ 0, i.e., the adversary approaches global optimality, we
obtain the true upper bound. For any other �nite value of `, we have:

Iq(z;u) ≤ Eqφ(z,u)[log pψ(u|z)− log p(u)] + ` := C2 + `. (5.9)

5.2.4 A practical objective for controllable fair representations

Recall that our goal is to �nd tractable estimates to the mutual information terms in Equation 5.1
to make the objective and constraints tractable. In the previous sections, we have derived a lower
bound for Iq(x,u|z) (which we want to maximize) and upper bounds for Iq(u, z) (which we
want to implicitly minimize to satisfy the constraint). Therefore, by applying these results to the
optimization problem in Equation 5.1, we obtain the following constrained optimization problem:

min
θ,φ

max
ψ∈Ψ

Lr = −Eqφ(x,z,u)[log pθ(x|z,u)] (5.10)

s.t. C1 = Eq(x,u)DKL(qφ(z|x,u)‖p(z)) < ε1

C2 = Eqφ(z,u)[log pψ(u|z)− log p(u)] < ε2

where Lr , C1, and C2 are introduced in Equations 5.2, 5.4 and 5.6 respectively.
Both C1 and C2 provide a way to limit Iq(z,u). C1 is guaranteed to be an upper bound

to Iq(z;u) but also upper-bounds Iq(x; z|u) (which we would like to maximize), so it is more
suitable when we value true guarantees on fairness over expressiveness. C2 may more accurately
approximate Iq(z;u) but is guaranteed to be an upper bound only in the case of an optimal
adversary. Hence, it is more suited for scenarios where the user is satis�ed with guarantees on
fairness in the limit of adversarial training, and we wish to learn more expressive representations.
Depending on the underlying application, the user can e�ectively remove either of the constraints
C1 or C2 (or even both) by setting the corresponding ε to in�nity.
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5.3 A Unifying Framework for Related Work

Multiple methods for learning fair representations have been proposed in the literature. [ZWS+13]
propose a method for clustering individuals into a small number of discrete fair representations.
Discrete representations, however, lack the representational power of distributed representations,
which vendors desire. In order to learn distributed fair representations, [ES15], [ELS+18] and
[MCPZ18] each propose adversarial training, where the latter (LAFTR) connects di�erent adver-
sarial losses to multiple notions of fairness. [LSL+15] propose VFAE for learning distributed fair
representations by using a variational autoencoder architecture with additional regularization
based on Maximum Mean Discrepancy (MMD) [GBR+07]. Each of these methods is limited to the
case of a binary sensitive attribute because their measurements of fairness are based on statistical
parity [ZWS+13], which is de�ned only for two groups.

Interestingly, each of these methods can be viewed as optimizing an approximation of the
Lagrangian dual of our objective in Equation 5.10, with particular �xed settings of the Lagrangian
multipliers:

arg min
θ,φ

max
ψ
Lr + λ1(C1 − ε1) + λ2(C2 − ε2) (5.11)

= arg min
θ,φ

max
ψ
Lr + λ1C1 + λ2C2

where Lr , Ci and εi are de�ned as in Equation 5.10, and the multipliers λi ≥ 0 are hyperparameters
controlling the relative strengths of the constraints (which now act as “soft” regularizers).

We use “approximation” to suggest these objectives are not exactly the same as ours, as ours
can deal with more than two groups in the fairness criterion C2 and theirs cannot. However, all
the fairness criteria achieve z ⊥ u at a global optimum; in the following discussions, for brevity
we use C2 to indicate their objectives, even when they are not identical to ours2.

Here, the values of ε do not a�ect the �nal solution. Therefore, if we wish to �nd representations
that satisfy speci�c constraints, we would have to search over the hyperparameter space to �nd
feasible solutions, which could be computationally ine�cient. We call this class of approaches
Mutual Information-based Fair Representations (MIFR3). In Table 5.1, we summarize these existing
methods.

2We also have not included the task classi�cation error in their methods, as we do not assume a single, speci�c task
or assume access to labels in our setting.

3Pronounced “Mipha”.

5_mifr:https://zelda.gamepedia.com/Mipha
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Table 5.1: Summarizing the components in existing methods. The hyperparameters (e.g. Az ,
α, β) are from the original notations of the corresponding methods.

λ1 λ2

Zemel et al. [ZWS+13] 0 Az/Ax
Edwards and Storkey [ES15] 0 α/β
Madras et al. [MCPZ18] 0 γ/β
Louizos et al. [LSL+15] 1 β

• [ZWS+13] considers Lr as well as minimizing statistical parity (Equation 4 in their paper);
they assume z is discrete, bypassing the need for adversarial training. Their objective is
equivalent to Equation 5.11 with λ1 = 0, λ2 = Az/Ax.

• [ES15] considers Lr (where pθ(x|z,u) is Gaussian) and adversarial training where the adver-
sary tries to distinguish the representations from two groups (Equation 9). Their objective is
equivalent to Equation 5.11 with λ1 = 0, λ2 = α/β.

• [MCPZ18] considers Lr and adversarial training, which optimizes over surrogates to the
demographic parity distance between two groups (Equation 4). Their objective is equivalent
to Equation 5.11 with λ1 = 0, λ2 = γ/β.

• [LSL+15] considers Lr , C1 with λ1 = 1 and the maximum mean discrepancy between two
sensitive groups (C2) (Equation 8). However, as Lr +C1 is the VAE objective, their solutions
does not prefer high mutual information between x and z (referred to as the “information
preference” property [CKS+16, ZSE17b, ZSE17a, ZSE18b]). Their objective is equivalent to
Equation 5.11 with λ1 = 1, λ2 = β.

All of the above methods requires hand-tuning λ to govern the trade-o� between the desiderata,
because each of these approaches optimizes the dual with �xed multipliers instead of optimizing

the multipliers to satisfy the fairness constraints, ε is ignored, so these approaches cannot ensure
that the fairness constraints are satis�ed. Using any of these approaches to empirically achieve
a desirable limit on unfairness requires manually tuning the multipliers (e.g., increase some λi
until the corresponding constraint is satis�ed) over many experiments and is additionally di�cult
because there is no interpretable relationship between the multipliers and a limit on unfairness.

Our method is also related to other works on fairness [MGB+18] and information theory.
[KTHS18] solve least square regression under multiple fairness constraints. [CWRV17] trans-
form the dataset to prevent discrimination on speci�c classi�cation tasks. [ZSE18b] discussed
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information-theoretic constraints in the context of learning latent variable generative models, but
did not discuss fairness.

5.4 Dual Optimization for Controllable Fair Representations

In order to exactly solve the dual of our practical objective from Equation 5.10 and guarantee
that the fairness constraints are satis�ed, we must optimize the model parameters as well as the
Lagrangian multipliers, which we do using the following dual objective:

max
λ≥0

min
θ,φ

max
ψ
L = Lr + λ>(C− ε) (5.12)

where λ = [λ1, λ2] are the multipliers and ε = [ε1, ε2] and C = [C1, C2] represent the constraints.
If we assume we are optimizing in the distribution space (i.e. Φ,Θ corresponds to the set of

all valid distributions (qφ(z|x,u), pθ(x|z,u), pθ(z))), then we can show that strong duality holds
(our primal objective from Equation 5.10 equals our dual objective from Equation 5.12).

Theorem 7. If ε1, ε2 > 0, then strong duality holds for the following optimization problem over

distributions pθ and qφ:

min
pθ,qφ

− Eqφ(x,z,u)[log pθ(x|z,u)] (5.13)

s.t. Eq(x,u)DKL(qφ(z|x,u)‖pθ(z)) < ε1

Eqφ(z)DKL(qφ(u|z)‖p(u)) < ε2

(5.14)

where qφ denotes qφ(z|x,u) and pθ denotes pθ(z) and pθ(x|z,u).

We show the complete proof in Appendix A.3.4. Intuitively, we utilize the convexity of KL
divergence (over the pair of distributions) and mutual information (over the conditional distribution)
to verify that Slater’s conditions hold for this problem.

In practice, we can perform standard iterative gradient updates in the parameter space: standard
gradient descent over θ, φ, gradient ascent over ψ (which parameterizes only the adversary), and
gradient ascent over λ. Intuitively, the gradient ascent over λ corresponds to a multiplier λ
increasing when its constraint is not being satis�ed, encouraging the representations to satisfy the
fairness constraints even at a cost to representation expressiveness. Empirically, we show that this
scheme is e�ective despite non-convexity in the parameter space.
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Note that given �nite model capacity, an ε that is too small may correspond to no feasible
solutions in the parameter space; that is, it may be impossible for the model to satisfy the speci�ed
fairness constraints. Here we introduce heuristics to estimate the mimimum feasible ε. The
minimum feasible ε1 and ε3 can be estimated by running the standard conditional VAE algorithm
on the same model and estimating the value of each divergence. Feasible ε2 can be approximated
by Hq(u), since Iq(z;u) ≤ Hq(u); This can easily be estimated empirically when u is binary or
discrete.

5.5 Experiments

We aim to experimentally answer the following:

• Do our information-theoretical objectives align well with existing notions of fairness?

• Do our constraints achieve their intended e�ects?

• How do MIFR and L-MIFR compare when learning controllable fair representations?

• How are the learned representations a�ected by other hyperparameters, such as the number
of iterations used for adversarial training in C2?

• Does L-MIFR have the potential to balance di�erent notions of fairness?

5.5.1 Experimental Setup

We evaluate our results on three datasets [ZWS+13, LSM+17, MCPZ18]. The �rst is the UCI
German credit dataset4, which contains information about 1000 individuals, with a binary sensitive
feature being whether the individual’s age exceeds a threshold. The downstream task is to predict
whether the individual is o�ered credit or not. The second is the UCI Adult dataset5, which contains
information of over 40,000 adults from the 1994 US Census. The downstream task is to predict
whether an individual earns more than $50K/year. We consider the sensitive attribute to be gender,
which is pre-processed to be a binary value. The third is the Heritage Health dataset6, which
contains information of over 60,000 patients. The downstream task is to predict whether the
Charlson Index (an estimation of patient mortality) is greater than zero. Diverging from previous

4https://archive.ics.uci.edu/ml/datasets
5https://archive.ics.uci.edu/ml/datasets/adult
6https://www.kaggle.com/c/hhp

5_mifr:https://archive.ics.uci.edu/ml/datasets
5_mifr:https://archive.ics.uci.edu/ml/datasets/adult
5_mifr:https://www.kaggle.com/c/hhp
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work [MCPZ18], we consider sensitive attributes to be age and gender, where there are 9 possible
age values and 2 possible gender values; hence the sensitive attributes have 18 con�gurations. This
prevents VFAE [LSL+15] and LAFTR [MCPZ18] from being applied, as both methods reply on
some statistical distance between two groups, which is not de�ned when there are 18 groups in
question7.

We assume that the model does not have access to labels during training; instead, it supplies its
representations to an unknown vendor’s classi�er, whose task is to achieve high prediction with
labels. We compare the performance of MIFR, the model with �xed multipliers, and L-MIFR, the
model using the Lagrangian dual optimization method. We provide details of the experimental
setup in Appendix B.3.1. Speci�cally, we consider the simpler form for p(z) commonly used in
VAEs, where p(z) is a �xed prior; the use of other more �exible parametrized forms of p(z), such
as normalizing �ows [DSDB16, RM15] and autoregressive models [KSJ+16b, vdOKK16], is left as
future work.

We estimate the mutual information values Iq(x; z|u) and Iq(u; z) on the test set using the
following equations:

Iq(x; z|u) = Eqφ(x,z,u)[log qφ(z|x,u)− log qφ(z|u)]

Iq(u; z) = Eqφ(x,z,u)[log qφ(u|z)− log q(u)]

where qφ(z|u) is estimated via kernel density estimation over samples from qφ(z|x,u) with
(x,u) sampled from the training set. Kernel density estimates are reasonable since both z and
u are low dimensional (for example, Adult considers a 10-dimension z for 40,000 individuals).
However, computing qφ(z|u) requires a summation over the training set, so we only compute
these mutual information quantities during evaluation. We include our implementations in
https://github.com/ermongroup/lag-fairness.

5.5.2 Mutual Information, Prediction Accuracy, and Fairness

We investigate the relationship between mutual information and prediction performance by con-
sidering area under the ROC curve (AUC) for prediction tasks. We also investigate the relationship
between mutual information and traditional fairness metrics by considering the ∆DP fairness met-
ric in [MCPZ18], which compares the absolute expected di�erence in classi�er outcomes between
two groups. ∆DP is only de�ned on two groups of classi�er outcomes, so it is not de�ned for

7∆DP is only de�ned for binary sensitive variables in [MCPZ18].

5_mifr:https://github.com/jiamings/lag-fairness
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Figure 5.1: The relationship between mutual information and fairness related quantities. Each dot
is the representations from an instance of MIFR with a di�erent set of hyperparameters. Green
line represents features obtained via principle component analysis. Increased mutual information
between inputs and representations increase task performance (left) and unfairness (right). For
Health we do not include ∆DP since it is not de�ned for more than two groups.
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Figure 5.2: Corresponding Ci values under di�erent εi with L-MIFR. After εi is �xed, we consider a
range of values for the other constraint, leading to a distribution of Ci for each εi (hence the box
plot).
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the Health dataset when considering the sensitive attributes to be “age and gender”, which has 18
groups. We use logistic regression classi�ers for prediction tasks.

From the results results in Figure 5.1, we show that there are strong positive correlations
between Iq(x; z|u) and test AUC, and between Iq(z,u) and ∆DP ; increases in Iq(z,u) decrease
fairness. We also include a baseline in Figure 5.1 where the features are obtained via the top-
k principal components (where k is the dimension of z), which has slightly better AUC but
signi�cantly worse fairness as measured by ∆DP . Therefore, our information theoretic notions of
fairness/expressiveness align well with existing notions such as ∆DP /test AUC.

5.5.3 Controlling Representation Fairness with L-MIFR

Keeping all other constraint budgets �xed, any increase in εi for an arbitrary constraint Ci implies
an increase in the unfairness budget; consequently, we are able to trade-o� fairness for more
informative representations when desired.

We demonstrate this empirically via an experiment where we note the Ci values corresponding
to a range of budgets εi at a �xed con�guration of the other constraint budgets εj (j 6= i). From
Figure 5.2, Ci increases as εi increases, and Ci < εi holds under di�erent values of the other
constraints εj . This suggest that we can use εi to control Ci (our fairness criteria) of the learned
representations.

We further show the changes in ∆DP (a traditional fairness criteria) values as we vary εi in
Figure 5.3. In Adult, ∆DP clearly increases as εi increases; this is less obvious in German, as ∆DP

is already very low. These results suggest that the L-MIFR user can control the level of fairness of
the representations quantitatively via ε.

5.5.4 Improving Representation Expressiveness with L-MIFR

Recall that our goal is to perform controlled fair representation learning, which requires us to
learn expressive representations subject to fairness constraints. We compare two approaches that
could achieve this: 1) MIFR, which has to consider a range of Lagrange multipliers (e.g. from a grid
search) to obtain solutions that satisfy the constraints; 2) L-MIFR, which �nds feasible solutions
directly by optimizing the Lagrange multipliers.

We evaluate both methods on 4 sets of constraints by modifying the values of ε2 (which is
the tighter estimate of Iq(z;u)) while keeping ε1 �xed, and we compare the expressiveness of the
features learned by the two methods in Figure 5.4. For MIFR, we perform a grid search running
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Figure 5.3: ∆DP under di�erent levels of ε with L-MIFR. ∆DP generally increases as ε increases.

52 = 25 con�gurations. In contrast, we run one instance of L-MIFR for each ε setting, which takes
roughly the same time to run as one instance of MIFR (the only overhead is updating the two scalar
values λ1 and λ2).
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Figure 5.4: Expressiveness vs. ε2. A larger feasible region (as measured by ε2) leads to more
expressive representations (as measured by Iq(x, z|u)).

In terms of representation expressiveness, L-MIFR outperforms MIFR even though MIFR took
almost 25x the computational resources. Therefore, L-MIFR is signi�cantly more computationally
e�cient than MIFR at learning controlled fair representation.
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D =1 D =2 D =5 D =10

Adult Iq(x; z|u) 10.46 10.94 9.75 9.54
Iq(z;u) 0.10 0.07 0.08 0.06

Health Iq(x; z|u) 16.60 16.47 16.65 16.75
Iq(z;u) 0.17 0.17 0.22 0.28

Table 5.2: Expressiveness and fairness of the representations from L-MIFR under various D.

5.5.5 Ablation Studies

The C2 objective requires adversarial training, which involves iterative training of (θ, φ) with
ψ. We assess the sensitivity of the expressiveness and fairness of the learned representations to
the number of iterations D for ψ per iteration for (θ, φ). Following practices in [GAA+17] to
have more iterations for critic, we consider D = {1, 2, 5, 10}, and use the same number of total
iterations for training.

In Table 5.2, we evaluate Iq(x; z|u) and Iq(z;u) obtained L-MIFR on Adult (ε2 = 0.10) and
Health (ε2 = 0.30). This suggests that the �nal solution of the representations is not very sensitive
to D, although larger D seem to �nd solutions that are closer to ε2.

5.5.6 Fair Representations under Multiple Notions

Finally, we demonstrate how L-MIFR could control multiple fairness constraints simultaneously,
thereby �nding representations that are reasonably fair when there are multiple fairness notions
being considered. We consider the Adult dataset, and describe the demographic parity, equalized
odds and equalized opportunity notions of fairness in terms of mutual information, which we denote
as IDP := Iq(z;u), IEO, IEOpp respectively (see details in Appendix B.3.3 about how IEO and
IEOpp are derived).

For L-MIFR, we set ε1 = 10 and other ε values to 0.1. For MIFR, we consider a more e�cient
approach than random grid search. We start by setting every λ = 0.1; then we multiply the λ
value for a particular constraint by 2 until the constraint is satis�ed by MIFR; we �nish when all
the constraints are satis�ed8. We �nd that this requires us to update the λ of IDP , IEO and IEOpp
four times each (so corresponding λ = 1.6); this costs 12x the computational resources needed by
L-MIFR.

8This allows MIFR to approach the feasible set from outside, so the solution it �nds will generally have high
expressiveness.
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Iq(x; z|u) C1 IDP IEO IEOpp

MIFR 9.34 9.39 0.09 0.10 0.07
L-MIFR 9.94 9.95 0.08 0.09 0.04

Table 5.3: Learning one representation for multiple notions of fairness on Adult. L-MIFR learns
representations that are better than MIFR on all the measurements instead of onlyC1. Here ε1 = 10
for C1 and ε = 0.1 for other constraints.

We compare the representations learned by L-MIFR and MIFR in Figure 5.3. L-MIFR outperforms
MIFR in terms of Iq(x; z|u), IDP , IEO and IEOpp, while only being slightly worse in terms of C1.
Since ε1 = 10, the L-MIFR solution is still feasible. This demonstrates that even with a thoughtfully
designed method for tuning λ, MIFR is still much inferior to L-MIFR in terms of computational cost
and representation expressiveness.

5.6 Discussion

In this chapter, we introduced an objective for learning controllable fair representations based on
mutual information. This interpretation allows us to unify and explain existing work. In particular,
we have shown that a range of existing approaches optimize an approximation to the Lagrangian
dual of our objective with �xed multipliers, �xing the trade-o� between fairness and expressiveness.
We proposed a dual optimization method that allows us to achieve higher expressiveness while
satisfying the user-speci�ed limit on unfairness.

In future work, we are interested in formally and empirically extending this framework and
the corresponding dual optimization method to other notions of fairness. It is also valuable to
investigate alternative approaches to training the adversary [GAA+17], the usage of more �exible
p(z) [RM15], and alternative solutions to bounding Iq(z,u).
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Chapter 6

Generation with Reweighted
Objectives

Generative adversarial networks (GANs) variants approximately minimize divergences between
the model and the data distribution using a discriminator. Wasserstein GANs (WGANs) enjoy
superior empirical performance, however, unlike in f -GANs, the discriminator does not provide an
estimate for the ratio between model and data densities, which is useful in applications such as
inverse reinforcement learning.

In this chapter, we propose an new training objective where we additionally optimize over
a set of importance weights over the generated samples. By suitably constraining the feasible
set of importance weights, we obtain a family of objectives which includes and generalizes the
original f -GAN and WGAN objectives. We show that a natural extension outperforms WGANs
while providing density ratios as in f -GAN, and demonstrate empirical success on distribution
modeling, density ratio estimation and image generation.

6.1 Introduction

Learning generative models to sample from complex, high-dimensional distributions is an important
task in machine learning with many important applications, such as image generation [KW13],
imitation learning [HE16] and representation learning [CDH+16]. Generative adversarial networks
(GANs, [GPAM+14]) are likelihood-free deep generative models [ML16] based on �nding the equi-
librium of a two-player minimax game between a generator and a critic (discriminator). Assuming
the optimal critic is obtained, one can cast the GAN learning procedure as minimizing a discrepancy

68
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measure between the distribution induced by the generator and the training data distribution.
Various GAN learning procedures have been proposed for di�erent discrepancy measures.

f -GANs [NCT16] minimize a variational approximation of the f -divergence between two distribu-
tions [Csi64, NWJ08]. In this case, the critic acts as a density ratio estimator [USS+16, GE17], i.e.,
it estimates if points are more likely to be generated by the data or the generator distribution. This
includes the original GAN approach [GPAM+14] which can be seen as minimizing a variational
approximation to the Jensen-Shannon divergence. Knowledge of the density ratio between two
distributions can be used for importance sampling and in a range of practical applications such as
mutual information estimation [DHFLM+18], o�-policy policy evaluation [LLTZ18], and de-biasing
of generative models [GSA+19].

Another family of GAN approaches are developed based on Integral Probability Metrics (IPMs,
[Mül97]), where the critic (discriminator) is restricted to particular function families. For the family
of Lipschitz-1 functions, the IPM reduces to the Wasserstein-1 or earth mover’s distance [RTG00],
which motivates the Wasserstein GAN (WGAN, [ACB17]) setting. Various approaches have been
applied to enforce Lipschitzness, including weight clipping [ACB17], gradient penalty [GAA+17]
and spectral normalization [MKKY18]. Despite its strong empirical success in image genera-
tion [KALL17, BDS18], the learned critic cannot be interpreted as a density ratio estimator, which
limits its usefulness for importance sampling or other GAN-related applications such as inverse
reinforcement learning [YSE19].

In this chapter, we address this problem via a generalized view of f -GANs and WGANs. The
generalized view introduces importance weights over the generated samples in the critic objective,
allowing prioritization over the training of di�erent samples. The algorithm designer can select
suitable feasible sets to constrain the importance weights; we show that both f -GAN and WGAN
are special cases to this generalization when speci�c feasible sets are considered. We further discuss
cases that select alternative feasible sets where divergences other than f -divergence and IPMs can
be obtained.

To derive concrete algorithms, we turn to a case where the importance weights belong to the
set of valid density ratios over the generated distribution. In certain cases, the optimal importance
weights can be obtained via closed-form solutions, bypassing the need to perform an additional
inner-loop optimization. We discuss one such approach, named KL-Wasserstein GAN (KL-WGAN),
that is easy to implement from existing WGAN approaches, and is compatible with state-of-the-
art GAN architectures. We evaluate KL-WGAN empirically on distribution modeling, density
estimation and image generation tasks. Empirical results demonstrate that KL-WGAN enjoys
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superior quantitative performance compared to its WGAN counterparts on several benchmarks.

6.2 Preliminaries

Notations Let X denote a random variable with separable sample space X and let P(X ) denote
the set of all probability measures over the Borel σ-algebra on X . We use P , Q to denote probabiliy
measures, and P � Q to denote P is absolutely continuous with respect to Q, i.e., the Radon-
Nikodym derivative dP/ dQ exists. Under Q ∈ P(X ), the p-norm of a function r : X → R is
de�ned as

‖r‖p :=

(∫
|r(x)|pdQ(x)

)1/p

, (6.1)

with ‖r‖∞ = limp→∞‖r‖p. The set of locally p-integrable functions is de�ned as

Lp(Q) := {r : X → R : ‖r‖p <∞}, (6.2)

i.e. its norm with respect to Q is �nite. We denote Lp≥0(Q) := {r ∈ Lp(Q) : ∀x ∈ X , r(x) ≥ 0}
which considers non-negative functions in Lp(Q). The space of probability measures wrt. Q is
de�ned as

∆(Q) := {r ∈ L1
≥0(Q) : ‖r‖1 = 1}. (6.3)

For example, for any P � Q, dP/ dQ ∈ ∆(Q) because
∫

(dP/ dQ) dQ = 1. We de�ne 1 such that
∀x ∈ X , 1(x) = 1, and de�ne im(·) and dom(·) as image and domain of a function respectively.

Integral Probability Metrics andWasserstein GANs For a �xed class of real-valued bounded
Borel measurable functions F on X , the integral probability metric (IPM) based on F and between
P,Q ∈ P(X ) is de�ned as:

IPMF (P,Q) := sup
T∈F

∣∣∣∣∫ T (x) dP (x)−
∫
T (x) dQ(x)

∣∣∣∣ .
If for all T ∈ F ,−T ∈ F then IPMF forms a metric over P(X ) [Mül97]; we assume this is always
true for F in this paper (so we can remove the absolute values). In particular, if F is the set of
all bounded 1-Lipschitz functions with respect to the metric over X , then the corresponding IPM
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becomes the Wasserstein distance between P and Q [Vil08]. This motivates the Wasserstein GAN
objective [ACB17]:

min
θ

max
φ

Ex∼Pdata
[Tφ(x)]− Ex∼Qθ [Tφ(x)], (6.4)

where Tφ is regularized to be approximately k-Lipschitz for some k. Various approaches have been
applied to enforce Lipschitzness of neural networks, including weight clipping [ACB17], gradient
penalty [GAA+17], and spetral normalization over the weights [MKKY18].

Despite its strong empirical performance, WGAN has two drawbacks. First, unlike f -GAN
(Lemma 2), it does not naturally recover a density ratio estimator from the critic. Granted, the
WGAN objective corresponds to an f -GAN one [SFG+09] when f(x) = 0 if x = 1 and f(x) = +∞
otherwise, so that f∗(x) = x; however, we can no longer use Lemma 2 to recover density ratios
given an optimal critic T , because the derivative f ′(x) does not exist. Second, WGAN places the
same weight on the objective for each generated sample, which could be sub-optimal when the
generated samples are of di�erent qualities.

6.3 A Generalization of f-GANs and WGANs

In order to achieve the best of both worlds, we propose an alternative generalization to the critic
objectives to both f -GANs and WGANs. Consider the following functional:

`f (T, r;P,Q) := Ex∼Q[f(r(x))] + Ex∼P [T (x)]− Ex∼Q[r(x) · T (x)] (6.5)

which depends on the distributions P and Q, the critic function T : X → R, and an additional
function r : X → R. For conciseness, we remove the dependency on the argument x for T, r, P,Q
in the remainder of the paper.

The function r : X → R here plays the role of “importance weights”, as they changes the
weights to the critic objective over the generator samples. When r = dP/ dQ, the objective above
simpli�es to EQ[f(dP/ dQ)] which is exactly the de�nition of the f -divergence between P and Q
(Eq. 2.5).

To recover an objective over only the critic T , we minimize `f as a function of r over a suitable
setR ⊆ L∞≥0(Q), thus eliminating the dependence over r:

LRf (T ;P,Q) := inf
r∈R

`f (T, r;P,Q) (6.6)
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We note that the minimization step is performed within a particular setR ⊆ L∞(Q), which
can be selected by the algorithm designer. The choice of the setR naturally gives rise to di�erent
critic objectives. As we demonstrate below (and in Figure 6.1), we can obtain critic objectives for
f -GAN as well as WGANs as special cases via di�erent choices ofR in LRf (T ;P,Q).

6.3.1 Recovering the f-GAN Critic Objective

First, we can recover the critic in the f -GAN objective by settingR = L∞≥0(Q), which is the set of
all non-negative functions in L∞(Q). Recall from Lemma 2 the f -GAN objective:

Df (P‖Q) = sup
T∈L∞(Q)

If (T ;P,Q) (6.7)

where If (T ;P,Q) := EP [T ] − EQ[f∗(T )] as de�ned in Lemma 2. The following proposition
shows that whenR = L∞≥0(Q), we recover If = LRf .

Proposition 1. Assume that f is di�erentiable at [0,∞). ∀P,Q ∈ P(X ) such that P � Q, and

∀T ∈ F ⊆ L∞(Q) such that im(T ) ⊆ dom((f ′)−1),

If (T ;P,Q) = inf
r∈L∞≥0(Q)

`f (T, r;P,Q). (6.8)

where If (T ;P,Q) := EP [T ]− EQ[f∗(T )].

Proof. From Fenchel’s inequality we have for convex f : R → R, ∀T (x) ∈ R and ∀r(x) ≥ 0,
f(r(x)) + f∗(T (x)) ≥ r(x)T (x) where equality holds when T (x) = f ′(r(x)). Taking the
expectation over Q, we have

EQ[f(r)]− EQ[rT ] ≥ −EQ[f∗(T )]; (6.9)

applying this to the de�nition of `f (T, r;P,Q), we have:

`f (T, r;P,Q) := EQ[f(r)] + EP [T ]− EQ[rT ]

≥ EP [T ]− EQ[f∗(T )] = If (T ;P,Q). (6.10)

where the inequality comes from Equation 6.9. The inequality becomes an equality when r(x) =

(f ′)−1(T (x)) for all x ∈ X . We note that such a case can be achieved, i.e., (f ′)−1(T ) ∈ L∞≥0(Q),
because ∀x ∈ X , (f ′)−1(T (x)) ∈ dom(f) = [0,∞) from the assumption over im(T ). Therefore,
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taking the in�mum over r ∈ L∞≥0(Q), we have:

If (T ;P,Q) = inf
r∈L∞≥0(Q)

`f (T, r;P,Q), (6.11)

which completes the proof.

6.3.2 Recovering the WGAN Critic Objective

Next, we recover the WGAN critic objective (IPM) by setting R = {1}, where 1(x) = 1 is a
constant function. First, we can equivalently rewrite the de�nition of an IPM using the following
notation:

IPMF (P,Q) = sup
T∈F

IW (T ;P,Q) (6.12)

where IW represents the critic objective. We show that IW = LRf whenR = {1} as follows.

Proposition 2. ∀P,Q ∈ P(X ) such that P � Q, and ∀T ∈ F ⊆ L∞(Q):

IW (T ;P,Q) = inf
r∈{1}

`f (T, r;P,Q) (6.13)

where IW (T ;P,Q) := EP [T ]− EQ[T ].

Proof. As {1} has only one element, the in�mum is:

`f (T,1;P,Q) = EQ[f(1)] + EP [T ]− EQ[T ] = IW (T ;P,Q) (6.14)

where we used f(1) = 0 for the second equality.

The above propositions show that LRf generalizes both f -GAN and WGANs critic objectives
by settingR = L∞≥0(Q) andR = {1} respectively.

6.3.3 Extensions to Alternative Constraints

The generalization with LRf allows us to introduce new objectives when we consider alternative
choices for the constraint setR. We consider setsR such that {1} ⊆ R ⊆ L∞≥0(Q). The following
proposition shows for some �xed T , the corresponding objective withR is bounded between the
f -GAN objective (whereR = L∞≥0(Q)) and the WGAN objective (whereR = {1}).
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Figure 6.1: High-level idea of f -WGAN. (Left) Minimization over di�erentR inLRf gives di�erent
critic objectives. Minimizing overL∞≥0(Q) recovers f -GAN (blue set), minimizing over {1} recovers
WGAN (orange set), and minimizing over ∆(Q) recovers f -WGAN (green set). (Right) Naturally,
as we consider smaller setsR to minimize over, the critic objective becomes larger for the same T .

Proposition 3. ∀P,Q ∈ P(X ) such that P � Q, ∀T ∈ L∞(Q) such that im(T ) ⊆ dom((f ′)−1),

and ∀R ⊆ L∞≥0(Q) such that {1} ⊆ R we have:

If (T ;P,Q) ≤ LRf (T ;P,Q) ≤ IW (T ;P,Q). (6.15)

Proof. In Appendix A.4.

We visualize this in Figure 6.1. Selecting the setR allows us to control the critic objective in
a more �exible manner, interpolating between the f -GAN critic and the IPM critic objective and
�nding suitable trade-o�s. Moreover, if we additionally take the supremum of LRf (T ;P,Q) over T ,
the result will be bounded between the supremum of If over T (corresponding to the f -divergence)
and the supremum of IW over T , as stated in the following theorem.

Theorem 8. For {1} ⊆ R ⊆ L∞≥0(Q), de�ne

Df,R(P‖Q) := sup
T∈F
LRf (T ;P,Q) (6.16)

where F := {T : X → dom((f ′)−1), T ∈ L∞(Q)}. Then

Df (P‖Q) ≤ Df,R(P‖Q) ≤ sup
T∈F

IW (T ;P,Q). (6.17)

Proof. In Appendix A.4.

A natural corollary is that Df,R de�nes a divergence between two distributions.
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Corollary 5. Df,R(P‖Q) de�nes a divergence between P and Q: Df,R(P‖Q) ≥ 0 for all P,Q ∈
P(X ), and Df,R(P‖Q) = 0 if and only if P = Q.

This allows us to interpret the corresponding GAN algorithm as variational minimization of a
certain divergence bounded between the corresponding f -divergence and IPM.

6.4 Practical f-Wasserstein GANs

As a concrete example, we consider the setR = ∆(Q), which is the set of all valid density ratios
over Q. We note that {1} ⊂ ∆(Q) ⊂ L∞≥0(Q) (see Figure 6.1), so the corresponding objective is
a divergence (from Corollary 5). We can then consider the variational divergence minimization
objective over L∆(Q)

f (T ;P,Q):

inf
Q∈P(X )

sup
T∈F

inf
r∈∆(Q)

`f (T, r;P,Q), (6.18)

We name this the “f -Wasserstein GAN” (f -WGAN) objective, since it provides an interpolation
between f -GAN and Wasserstein GANs while recovering a density ratio estimate between two
distributions.

6.4.1 KL-Wasserstein GANs

For the f -WGAN objective in equation 6.18, the trivial algorithm would have to perform iterative
updates to three quantitiesQ, T and r, which involves three nested optimizations. While this seems
impractical, we show that for certain choices of f -divergences, we can obtain closed-form solutions
for the optimal r ∈ ∆(Q) in the innermost minimization; this bypasses the need to perform an
inner-loop optimization over r ∈ ∆(Q), as we can simply assign the optimal solution from the
close-form expression.

Theorem 9. Let f(u) = u log u and F a set of real-valued bounded measurable functions on X . For
any �xed choice of P,Q, and T ∈ F , we have

arg min
r∈∆(Q)

EQ[f(r)] + EP [T ]− EQ[r · T ] =
eT

EQ[eT ]
(6.19)

Proof. In Appendix A.4.
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The above theorem shows that if the f -divergence of interest is the KL divergence, we can
directly obtain the optimal r ∈ ∆(Q) using equation 6.19 for any �xed critic T . Then, we can
apply this r to the f -WGAN objective, and perform gradient descent updates on Q and T only.
Avoiding the optimization procedure over r allows us to propose practical algorithms that are
similar to existing WGAN procedures. In Appendix B.4.2, we show a similar argument with χ2-
divergence, another f -divergence admitting a closed-form solution, and discuss its connections
with the χ2-GAN approach [TCH+18].

6.4.2 Implementation Details

In Algorithm 1, we describe KL-Wasserstein GAN (KL-WGAN), a practical algorithm motivated
by the f -WGAN objectives based on the observations in Theorem 9. We note that r0 corresponds
to selecting the optimal value for r from Theorem 9; once r0 is selected, we ignore the e�ect of
EQ[f(r0)] to the objective and optimize the networks with the remaining terms, which corresponds
to weighting the generated samples with r0; the critic will be updated as if the generated samples are
reweighted. In particular,∇φ(D0−D1) corresponds to the critic gradient (T , which is parameterized
by φ) and∇θD1 corresponds to the generator gradient (Q, parameterized by θ).

In terms of implementation, the only di�erences between KL-WGAN and WGAN are between
lines 8 and 11, where WGAN will assign r0(x) = 1 for all x ∼ Qm. In contrast, KL-WGAN
“importance weights” the samples using the critic, in the sense that it will assign higher weights
to samples that have large Tφ(x) and lower weights to samples that have low Tφ(x). This will
encourage the generator Qθ(x) to put more emphasis on samples that have high critic scores. It is
relatively easy to implement the KL-WGAN algorithm from an existing WGAN implementation, as
we only need to modify the loss function. We present an implementation of KL-WGAN losses (in
PyTorch) in Appendix B.4.1.

While the mini-batch estimation for r0(x) provides a biased estimate to the optimal r ∈ ∆(Q)

(which according to Theorem 9 is eTθ(x)/EQ[eTθ(x)], i.e., normalized with respect to Q instead of
over a minibatch of m samples as done in line 8), we found that this does not a�ect performance
signi�cantly. We further note that computing r0(x) does not require additional network evaluations,
so the computational cost for each iteration is nearly identical between WGAN and KL-WGAN.
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Algorithm 1 Pseudo-code for KL-Wasserstein GAN
1: Input: the (empirical) data distribution pdata;
2: Output: implicit generative model Qθ .
3: Initialize generator Qθ and discriminator Tφ.
4: repeat
5: Draw Pm := m i.i.d. samples from pdata;
6: Draw Qm := m i.i.d. samples from Qθ(x).
7: Compute D1 := EPm [Tφ(x)] (real samples)
8: for all x ∈ Qm (fake samples) do
9: Compute r0(x) := eTφ(x)/EQm [eTφ(x)]

10: end for
11: Compute D0 := EQm [r0(x)Tφ(x)].
12: Perform SGD over θ with −∇θD0;
13: Perform SGD over φ with∇φ(D0 −D1).
14: Regularize Tφ to satisfy k-Lipschitzness.
15: until Stopping criterion return learned implicit generative model Qθ .

6.5 Related Work

6.5.1 f-divergences, IPMs and GANs

Variational f -divergence minimization and IPM minimization paradigms are widely adopted
in GANs. A non-exhaustive list includes f -GAN [NCT16], Wasserstein GAN [ACB17], MMD-
GAN [LCC+17], WGAN-GP [GAA+17], SNGAN [MKKY18], LSGAN [MLX+17], etc. The f -
divergence paradigms enjoy better interpretations over the role of learned discriminator (in terms
of density ratio estimation), whereas IPM-based paradigms enjoy better training stability and
empirical performance. Prior work have connected IPMs with χ2 divergences between mixtures
of data and model distributions [MLX+17, TCH+18, MS17]; our approach can be applied to χ2

divergences as well, and we discuss its connections with χ2-GAN in Appendix B.4.2.
Several works [LBC17, FT18] considered restricting function classes directly over the f -GAN

objective; [HNW19] show that restricted f -GAN objectives are lower bounds to Wasserstein
autoencoder [TBGS17] objectives, aligning with our argument for f -GAN and WGAN (Figure 6.1).

Our approach is most related to regularized variational f -divergence estimators [NWJ10,
RRGGP12] and linear f -GANs [LBC17, LC18] where the function family F is a RKHS with �xed
“feature maps”. Di�erent from these approaches, ours naturally allows the “feature maps” to be
learned. Moreover, considering both restrictions allows us to bypass inner-loop optimization via
closed-form solutions in certain cases (such as KL or χ2 divergences); this leads to our KL-WGAN
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approach which is easy to implement from existing WGAN implementations, and also have similar
computational cost per iteration.

6.5.2 Reweighting of Generated Samples

The learned discriminators in GANs can further be used to perform reweighting over the generated
samples [TCH+18]; these include rejection sampling [AOD+18], importance sampling [GSA+19,
TCH+18], and Markov chain monte carlo [THF+18]. These approaches can only be performed
after training has �nished, unlike our KL-WGAN case where discriminator-based reweighting are
performed during training.

Moreover, prior reweighting approaches assume that the discriminator learns to approximate
some (�xed) function of the density ratio dpdata/ dQθ, which does not apply directly to general
IPM-based GAN objectives (such as WGAN); in KL-WGAN, we interpret the discriminator outputs
as (un-normalized, regularized) log density ratios, introducing the density ratio interpretation to
the IPM paradigm. We note that post-training discriminator-based reweighting can also be applied
to our approach, and is orthogonal to our contributions; we leave this as future work.

Table 6.1: Negative Log-likelihood (NLL) and Maximum mean discrepancy (MMD, multiplied by
103) results on six 2-d synthetic datasets. Lower is better. W denotes the original WGAN objective,
and KL-W denotes the proposed KL-WGAN objective.

Metric GAN MoG Banana Rings Square Cosine Funnel

NLL W 2.65± 0.00 3.61± 0.02 4.25± 0.01 3.73± 0.01 3.98± 0.00 3.60± 0.01
KL-W 2.54± 0.00 3.57± 0.00 4.25± 0.00 3.72± 0.00 4.00± 0.01 3.57± 0.00

MMD W 25.45± 7.78 3.33± 0.59 2.05± 0.47 2.42± 0.24 1.24± 0.40 1.71± 0.65
KL-W 6.51± 3.16 1.45± 0.12 1.20± 0.10 1.10± 0.23 1.33± 0.23 1.08± 0.23

6.6 Experiments

We release code for our experiments in https://github.com/ermongroup/f-wgan.

6.6.1 Synthetic and UCI Benchmark Datasets

We �rst demonstrate the e�ectiveness of KL-WGAN on synthetic and UCI benchmark datasets [AN07]
considered in [WSSG18]. The 2-d synthetic datasets include Mixture of Gaussians (MoG), Banana,
Ring, Square, Cosine and Funnel; these datasets cover di�erent modalities and geometries. We use

6_fwgan:{https://github.com/ermongroup/f-wgan}
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Figure 6.2: KL-WGAN samples on 2d distributions. Histograms of samples from the data
distribution (top), WGAN (middle) and our KL-WGAN (bottom).

Figure 6.3: Estimating density ratios with KL-WGAN. The �rst column contains the samples
used for training, the second column is the ground truth density of P , the third and fourth columns
are the density of Q times the estimated density ratios from original f -GAN (third column) and
our KL-WGAN (fourth column).

RedWine, WhiteWine and Parkinsons from the UCI datasets. We use the same SNGAN [MKKY18]
arhictetures for WGAN and KL-WGANs, which uses spectral normalization to enforce Lipschitzness
(detailed in Appendix B.4.3).

After training, we draw 5,000 samples from the generator and then evaluate two metrics
over a �xed validation set. One is the negative log-likelihood (NLL) of the validation samples
on a kernel density estimator �tted over the generated samples; the other is the maximum mean
discrepancy (MMD, [BGR+06]) between the generated samples and validation samples. To ensure
a fair comparison, we use identical kernel bandwidths for all cases.

Distribution modeling We report the mean and standard error for the NLL and MMD results
in Tables 6.1 and 6.2 (with 5 random seeds in each case) for the synthetic datasets and UCI datasets



CHAPTER 6. GENERATION WITH REWEIGHTED OBJECTIVES 80

Table 6.2: Negative Log-likelihood (NLL, top two rows) and Maximum mean discrepancy (MMD,
multiplied by 103, bottom two rows) results on real-world datasets. Lower is better for both
evaluation metrics. W denotes the original WGAN objective, and KL denotes the proposed KL-
WGAN objective.

RedWine WhiteWine Parkinsons

W 14.55± 0.04 14.12± 0.02 20.24± 0.08
KL 14.41± 0.03 14.08± 0.02 20.16± 0.05

W 2.61± 0.37 1.32± 0.10 1.30± 0.09
KL 2.55± 0.11 1.23± 0.17 0.84± 0.04

Figure 6.4: Estimated divergencewithKL-WGAN.The results are shown with respect to training
epochs (smoothed with a window of 10).

respectively. The results demonstrate that our KL-WGAN approach outperforms its WGAN coun-
terpart on all but the Cosine dataset. From the histograms of samples in Figure 6.2, we can visually
observe where our KL-WGAN performs signi�cantly better than WGAN. For example, WGAN fails
to place enough probability mass in the center of the Gaussians in MoG and fails to learn a proper
square in Square, unlike our KL-WGAN approaches.

Density ratio estimation We demonstrate that adding the constraint r ∈ ∆(Q) leads to e�ective
density ratio estimators. We consider measuring the density ratio from synthetic datasets, and
compare them with the original f -GAN with KL divergence. We evaluate the density ratio estimation
quality by multiplying dQ with the estimated density ratios, and compare that with the density of
P ; ideally the two quantities should be identical. We demonstrate empirical results in Figure 6.3,
where we plot the samples used for training, the ground truth density of P and the two estimates
given by two methods. In terms of estimating density ratios, our proposed approach is comparable
to the f -GAN one.
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Table 6.3: Inception and FID scores for CIFAR10 image generation. We list compar-
isons with results reported by WGAN-GP [GAA+17], Fisher GAN [MS17], χ2 GAN [TCH+18],
MoLM [RMRV18], SNGAN [MKKY18], NCSN [SE19c], BigGAN [BDS18] and Sphere GAN [PK19].
(*) denotes our experiments with the PyTorch BigGAN implementation.

Method Inception score FID score

CIFAR10 Unconditional

WGAN-GP 7.86± .07 -
Fisher GAN 7.90± .05 -
MoLM 7.90± .10 18.9
SNGAN 8.22± .05 21.7
Sphere GAN 8.39± .08 17.1
NCSN 8.91 25.32

BigGAN* 8.60± .10 16.38
KL-BigGAN* 8.66± .09 15.23

CIFAR10 Conditional

Fisher GAN 8.16± .12 -
WGAN-GP 8.42± .10 -
χ2-GAN 8.44± .10 -
SNGAN 8.60± .08 17.5
BigGAN 9.22 14.73

BigGAN* 9.08± .11 9.51
KL-BigGAN* 9.20± .09 9.17

Stability of critic objectives For the MoG, Square and Cosine datasets, we further show the
estimated divergences over a batch of 256 samples in Figure 6.4, where WGAN uses IW and KL-
WGAN uses the proposed L∆(Q)

f . While both estimated divergences decrease over the course of
training, our KL-WGAN divergence is more stable on all three cases. In addition, we evaluate the
number of occurrences when a negative estimate of the divergences was produced for an epoch
(which contradicts the fact that divergences should be non-negative); over 500 batches, WGAN has
46, 181 and 55 occurrences on MoG, Square and Cosine respectively, while KL-WGAN only has 29,
100 and 7 occurrences. This suggests that the proposed objective is easier to estimate and optimize,
and is more stable across di�erent iterations.
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Table 6.4: FID scores for CelebA image generation. The mean and standard deviation are
obtained from 4 instances trained with di�erent random seeds.

Method Image Size FID score

BigGAN
64× 64

18.07± 0.47
KL-BigGAN 17.70± 0.32

6.6.2 Image Generation

We further evaluate our KL-WGAN’s practical on image generation tasks on CIFAR10 and CelebA
datasets. Our experiments are based on the BigGAN [BDS18] PyTorch implementation. We use a
smaller network than the one reported in [BDS18] (implemented on TensorFlow), using the default
architecture in the PyTorch implementation.

We compare training a BigGAN network with its original objective and training same network
with our proposed KL-WGAN algorithm, where we add steps 8 to 11 in Algorithm 1. In addition,
we also experimented with the original f -GAN with KL divergence; this failed to train properly
due to numerical issues where exponents of very large critic values gives in�nity values in the
objective.

We report two common benchmarks for image generation, Inception scores [SGZ+16] and
Fréchet Inception Distance (FID) [HRU+17] 1 in Table 6.3 (CIFAR10) and Table 6.4 (CelebA). We do
not report inception score on CelebA since the real dataset only has a score of less than 3, so the
score is not very indicative of generation performance [HRU+17]. We show generated samples
from the model in Appendix B.4.4.

Despite the strong performance of BigGAN, our method is able to consistently achieve superior
inception scores and FID scores consistently on all the datasets and across di�erent random seeds.
This demonstrates that the KL-WGAN algorithm is practically useful, and can serve as a viable
drop-in replacement for the existing WGAN objective even on state-of-the-art GAN models, such
as BigGAN.

6.7 Discussion

In this chapter, we introduce a generalization of f -GANs and WGANs based on optimizing a
(regularized) objective over importance weighted samples. This perspective allows us to recover

1Based on https://github.com/mseitzer/pytorch-�d

6_fwgan:https://github.com/mseitzer/pytorch-fid
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both f -GANs and WGANs when di�erent sets to optimize for the importance weights are considered.
In addition, we show that this generalization leads to alternative practical objectives for training
GANs and demonstrate its e�ectiveness on several di�erent applications, such as distribution
modeling, density ratio estimation and image generation. The proposed method only requires a
small change in the original training algorithm and is easy to implement in practice.

In future work, we are interested in considering other constraints that could lead to alternative
objectives and/or inequalities and their practical performances. It would also be interesting to
investigate the KL-WGAN approaches on high-dimensional density ratio estimation tasks such
as o�-policy policy evaluation, inverse reinforcement learning and contrastive representation
learning.



Chapter 7

Generation with Negative Data
Augmentation

In the previous chapter, we discussed how we can incorporate reweighting to the supervised
learning objective and improve GAN training. In this chapter, we consider another improvement
that introduces certain data augmentations to the binary classi�cation objective. Similar to tradi-
tional data augmentations in supervised learning, this allows us to improve generative modeling
performance that cannot be achieved by the objective function alone.

Data augmentation is often used to enlarge datasets with synthetic samples generated in
accordance with the underlying data distribution. To enable a wider range of augmentations, we
explore negative data augmentation strategies (NDA) that intentionally create out-of-distribution
samples. We show that such negative out-of-distribution samples provide information on the
support of the data distribution, and can be leveraged for generative modeling and representation
learning.

We introduce a new GAN training objective where we use NDA as an additional source
of synthetic data for the discriminator. We prove that under suitable conditions, optimizing the
resulting objective still recovers the true data distribution but can directly bias the generator towards
avoiding samples that lack the desired structure. Empirically, models trained with our method
achieve improved conditional/unconditional image generation along with improved anomaly
detection capabilities. Further, we incorporate the same negative data augmentation strategy in a
contrastive learning framework for self-supervised representation learning on images and videos,
achieving improved performance on downstream image classi�cation, object detection, and action
recognition tasks. These results suggest that prior knowledge on what does not constitute valid

84
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data is an e�ective form of weak supervision across a range of unsupervised learning tasks.
This chapter is based on [SKS+21]. Abhishek Sinha and Ayush Kumar contributed to the

contents of this chapter. My contributions include providing the theory and initial code for the
GAN and the contrastive learning setups.

7.1 Introduction

Data augmentation strategies for synthesizing new data in a way that is consistent with an under-
lying task are extremely e�ective in both supervised and unsupervised learning [vdOLV18, ZIE16,
NF16, ARV19]. Because they operate at the level of samples, they can be combined with most
learning algorithms. They allow for the incorporation of prior knowledge (inductive bias) about
properties of typical samples from the underlying data distribution [JWAAN18, ASE17], e.g., by
leveraging invariances to produce additional “positive” examples of how a task should be solved.

To enable users to specify an even wider range of inductive biases, we propose to leverage
an alternative and complementary source of prior knowledge that speci�es how a task should
not be solved. We formalize this intuition by assuming access to a way of generating samples
that are guaranteed to be out-of-support for the data distribution, which we call a Negative Data

Augmentation (NDA). Intuitively, negative out-of-distribution (OOD) samples can be leveraged as a
useful inductive bias because they provide information about the support of the data distribution
to be learned by the model. For example, in a density estimation problem we can bias the model to
avoid putting any probability mass in regions which we know a-priori should have zero probability.
This can be an e�ective prior if the negative samples cover a su�ciently large area. The best
NDA candidates are ones that expose common pitfalls of existing models, such as prioritizing local
structure over global structure [GRM+18]; this motivates us to consider known transformations
from the literature that intentionally destroy the spatial coherence of an image [NF16, DT17,
YHO+19], such as Jigsaw transforms.

Building on this intuition, we introduce a new GAN training objective where we use NDA
as an additional source of fake data for the discriminator as shown in Fig. 7.1. Theoretically, we
can show that if the NDA assumption is valid, optimizing this objective will still recover the data
distribution in the limit of in�nite data. However, in the �nite data regime, there is a need to
generalize beyond the empirical distribution [ZRY+18]. By explicitly providing the discriminator
with samples we want to avoid, we are able to bias the generator towards avoiding undesirable
samples thus improving generation quality.
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Figure 7.1: Negative Data Augmentation for GANs.

Furthermore, we propose a way of leveraging NDA for unsupervised representation learning.
We propose a new contrastive predictive coding [HFW+19, HXZ19] (CPC) objective that encourages
the distribution of representations corresponding to in-support data to become disjoint from that
of NDA data. Empirically, we show that applying NDA with our proposed transformations (e.g.,
forcing the representation of normal and jigsaw images to be disjoint) improves performance in
downstream tasks.

With appropriately chosen NDA strategies, we obtain superior empirical performance on a
variety of tasks, with almost no cost in computation. For generative modeling, models trained
with NDA achieve better image generation, image translation and anomaly detection performance
compared with the same model trained without NDA. Similar gains are observed on representation
learning for images and videos over downstream tasks such as image classi�cation, object detection
and action recognition. These results suggest that NDA has much potential to improve a variety of
self-supervised learning techniques.

7.2 Negative Data Augmentation

The input to most learning algorithms is a dataset of samples from an underlying data distribution
pdata. While pdata is unknown, learning algorithms always rely on prior knowledge about its
properties (inductive biases [WM97]), e.g., by using speci�c functional forms such as neural
networks. Similarly, data augmentation strategies exploit known invariances of pdata, such as the
conditional label distribution being invariant to semantic-preserving transformations.

While typical data augmentation strategies exploit prior knowledge about what is in support
of pdata, in this paper, we propose to exploit prior knowledge about what is not in the support of
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pdata. This information is often available for common data modalities (e.g., natural images and
videos) and is under-exploited by existing approaches. Speci�cally, we assume: (1) there exists
an alternative distribution p such that its support is disjoint from that of pdata; and (2) access to a
procedure to e�ciently sample from p. We emphasize p need not be explicitly de�ned (e.g., through
an explicit density) – it may be implicitly de�ned by a dataset or by a procedure that transforms
samples from pdata into ones from p by suitably altering their structure.

Figure 7.2: Negative augmentations produce out-of-distribution samples. Samples by nega-
tive augmentations lack the typical structure of natural images, and can be used to inform a model
on what it should not learn.

Analogous to typical data augmentations, NDA strategies are by de�nition domain and task
speci�c. In this paper, we focus on natural images and videos, and leave the application to other
domains (such as natural language processing) as future work. How do we select a good NDA
strategy? According to the manifold hypothesis [FMN16], natural images lie on low-dimensional
manifolds: pdata is supported on a low-dimensional manifold of the ambient (pixel) space. This
suggests that many negative data augmentation strategies exist. Indeed, sampling random noise is
in most cases a valid NDA. However, while this prior is generic, it is not very informative, and this
NDA will likely be ine�ective for most learning problems. Intuitively, NDA is informative if its
support is close (in a suitable metric) to that of pdata, while being disjoint. These negative samples
will provide information on the “boundary” of the support of pdata, which we will show is helpful
in several learning problems. In most of our tasks, the images are processed by convolutional
neural networks (CNNs) that are good at processing local features but not necessarily global
features [GRM+18]. Therefore, we may consider NDA examples to be ones that preserve local
features (“informative”) and break global features, so that it forces the CNNs to learn global features
(by realizing NDAs are di�erent from real data).

Leveraging this intuition, we show several image transformations from the literature that can be
viewed as generic NDAs over natural images in Figure 7.2, that we will use for generative modeling
and representation learning in the following sections. Details about these transformations can be
found in Appendix B.5.2.
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7.3 NDA for Generative Adversarial Networks

Figure 7.3: Schematic overview of our NDA framework. Left: In the absence of NDA, the
support of a generative modelPθ (blue oval) learned from samples (green dots) may “over-generalize”
and include samples from P1 or P2. Right: With NDA, the learned distribution Pθ becomes disjoint
from NDA distributions P1 and P2, thus pushing Pθ closer to the true data distribution pdata (green
oval). As long as the prior is consistent, i.e. the supports of P1 and P2 are truly disjoint from pdata,
the best �t distribution in the in�nite data regime does not change.

In GANs, we are interested in learning a generative model Gθ from samples drawn from some
data distribution pdata [GPAM+14]. GANs use a binary classi�er, the so-called discriminatorDφ, to
distinguish real data from generated (fake) samples. The generator Gθ is trained via the following
mini-max objective that performs variational Jensen-Shannon divergence minimization:

min
Gθ∈P(X )

max
Dφ

LJS(Gθ, Dφ) where (7.1)

LJS(Gθ, Dφ) = Ex∼pdata [log(Dφ(x))] + Ex∼Gθ [log(1−Dφ(x))] (7.2)

This is a special case to the more general variational f -divergence minimization objective [NCT16].
The optimal Dφ for any Gθ is (pdata/Gθ)/(1 + pdata/Gθ), so the discriminator can serve as a
density ratio estimator between pdata and Gθ .

With su�ciently expressive models and in�nite capacity, Gθ will match pdata. In practice,
however, we have access to �nite datasets and limited model capacity. This means that the generator
needs to generalize beyond the empirical distribution, which is challenging because the number
of possible discrete distributions scale doubly exponentially w.r.t. to the data dimension. Hence,
as studied in [ZRY+18], the role of the inductive bias is critical. For example, [ZRY+18] report
that when trained on images containing 2 objects only, GANs and other generative models can
sometimes “generalize” by generating images with 1 or 3 objects (which were never seen in the
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training set). The generalization behavior – which may or may not be desirable – is determined
by factors such as network architectures, hyperparameters, etc., and is di�cult to characterize
analytically.

Here we propose to bias the learning process by directly specifying what the generator should
not generate through NDA. We consider an adversarial game based on the following objective:

min
Gθ∈P(X )

max
Dφ

LJS(λGθ + (1− λ)P ,Dφ) (7.3)

where the negative samples are generated from a mixture of Gθ (the generator distribution) and P
(the NDA distribution); the mixture weights are controlled by the hyperparameter λ. Intuitively,
this can help addresses the above “over-generalization” issue, as we can directly provide supervision
on what should not be generated and thus guide the support of Gθ (see Figure 7.3) . For instance,
in the object count example above, we can empirically prevent the model from generating images
with an undesired number of objects (see Appendix Section A for experimental results on this task).

In addition, the introduction of NDA samples will not a�ect the solution of the original GAN
objective in the limit. In the following theorem, we show that given in�nite training data and
in�nite capacity discriminators and generators, using NDA will not a�ect the optimal solution to
the generator, i.e. the generator will still recover the true data distribution.

Theorem 10. Let P ∈ P(X ) be any distribution over X with disjoint support than pdata, i.e.,

such that supp(pdata) ∩ supp(P ) = ∅. Let Dφ : X → R be the set of all discriminators over X ,
f : R≥0 → R be a convex, semi-continuous function such that f(1) = 0, f? be the convex conjugate

of f , f ′ its derivative, and Gθ be a distribution with sample space X . Then ∀λ ∈ (0, 1], we have:

arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (Gθ, Dφ) = arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = pdata (7.4)

where Lf (Q,Dφ) = Ex∼pdata [Dφ(x)] − Ex∼Q[f?(Dφ(x))] is the objective for f -GAN [NCT16].

However, the optimal discriminators are di�erent for the two objectives:

arg max
Dφ:X→R

Lf (Gθ, Dφ) = f ′(pdata/Gθ) (7.5)

arg max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = f ′(pdata/(λGθ + (1− λ)P )) (7.6)

Proof. See Appendix A.5.1.
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The above theorem shows that in the limit of in�nite data and computation, adding NDA
changes the optimal discriminator solution but not the optimal generator. In practice, when
dealing with �nite data, existing regularization techniques such as weight decay and spectral
normalization [MKKY18] allow potentially many solutions that achieve the same objective value.
The introduction of NDA samples allows us to �lter out certain solutions by providing additional
inductive bias through OOD samples. In fact, the optimal discriminator will re�ect the density ratio
between pdata and λGθ + (1− λ)P (see Eq.(7.6)), and its values will be higher for samples from
pdata compared to those from P . As we will show in Section 7.5, a discriminator trained with this
objective and suitable NDA performs better than relevant baselines for other downstream tasks
such as anomaly detection.

7.4 NDA for Constrastive Representation Learning

Using a classi�er to estimate a density ratio is useful not only for estimating f -divergences (as in
the previous section) but also for estimating mutual information between two random variables.
In representation learning, mutual information (MI) maximization is often employed to learn
compact yet useful representations of the data, allowing one to perform downstream tasks e�-
ciently [TZ15, NWJ08, POvdO+19, vdOLV18]. Here, we show that NDA samples are also bene�cial
for representation learning.

In contrastive representation learning (such as CPC [vdOLV18]), the goal is to learn a mapping
hθ(x) : X → P(Z) that maps a datapoint x to some distribution over the representation space Z ;
once the network hθ is learned, representations are obtained by sampling from z ∼ hθ(x). CPC
maximizes the following objective:

ICPC(hθ, gφ) := Ex∼pdata(x),z∼hθ(x),ẑi∼pθ(z)

[
log

ngφ(x, z)

gφ(x, z) +
∑n−1

j=1 gφ(x, ẑj)

]
(7.7)

where pθ(z) =
∫
hθ(z|x)pdata(x) dx is the marginal distribution of the representations associated

with pdata. Intuitively, the CPC objective involves an n-class classi�cation problem where gφ
attempts to identify a matching pair (i.e. (x, z)) sampled from the joint distribution from the
(n − 1) non-matching pairs (i.e. (x, ẑj)) sampled from the product of marginals distribution.
Note that gφ plays the role of a discriminator/critic, and is implicitly estimating a density ratio.
As n → ∞, the optimal gφ corresponds to an un-normalized density ratio between the joint
distribution and the product of marginals, and the CPC objective matches its upper bound which is
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the mutual information between X and Z [POO+19, SE19b]. However, this objective is no longer
able to control the representations for data that are out of support of pdata, so there is a risk that
the representations are similar between pdata samples and out-of-distribution ones.

To mitigate this issue, we propose to use NDA in the CPC objective, where we additionally
introduce a batch of NDA samples, for each positive sample:

ICPC(hθ, gφ) := E

[
log

(n+m)gφ(x, z)

gφ(x, z) +
∑n−1

j=1 gφ(x, ẑj) +
∑m

k=1 gφ(x, zk)

]
(7.8)

where the expectation is taken over x ∼ pdata(x), z ∼ hθ(x), ẑi ∼ pθ(z), xk ∼ p (NDA
distribution), zk ∼ hθ(xk) for all k ∈ [m]. Here, the behavior of hθ(x) when x is NDA is
optimized explicitly, allowing us to impose additional constraints to the NDA representations.
This corresponds to a more challenging classi�cation problem (compared to basic CPC) that
encourages learning more informative representations. In the following theorem, we show that
the proposed objective encourages the representations for NDA samples to become disjoint from
the representations for pdata samples, i.e. NDA samples and pdata samples do not map to the same
representation.

Theorem11. (Informal) The optimal solution to hθ in the NDA-CPC objective maps the representations

of data samples and NDA samples to disjoint regions.

Proof. See Appendix A.5.2 for a detailed statement and proof.

7.5 NDA-GAN Experiments

In this section we report experiments with di�erent types of NDA for image generation. Additional
details about the network architectures and hyperparameters can be found in Appendix B.5.7.

Unconditional Image Generation. We conduct experiments on various datasets using the
BigGAN architecture [BDS18] for unconditional image generation1. We �rst explore various
image transformations from the literature to evaluate which ones are e�ective as NDA. For each
transformation, we evaluate its performance as NDA (training as in Eq. 7.3) and as a traditional
data augmentation strategy, where we enlarge the training set by applying the transformation
to real images (denoted PDA for positive data augmentation). Table 7.1 shows the FID scores for
di�erent types of transformations as PDA/NDA. The results suggest that transformations that

1We feed a single label to all images to make the architecture suitable for unconditional generation.
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Figure 7.4: Discriminator outputs for images. Histogram of di�erence in the discriminator
output for a real image and it’s Jigsaw version. Without NDA training, the discriminator has trouble
di�erentiating real or NDA samples.

spatially corrupt the image are strong NDA candidates. It can be seen that Random Horizontal Flip
is not e�ective as an NDA; this is because �ipping does not spatially corrupt the image but is rather
a semantic preserving transformation, hence the NDA distribution P is not disjoint from pdata. On
the contrary, it is reasonable to assume that if an image is likely under pdata, its �ipped variant
should also be likely. This is con�rmed by the e�ectiveness of this strategy as PDA.

We believe spatially corrupted negatives perform well as NDA in that they push the discriminator
to focus on global features instead of local ones (e.g., texture). We con�rm this by plotting the
histogram of di�erences in the discriminator output for a real image and it’s Jigsaw version as
shown in Fig. 7.4. We show that the di�erence is (a) centered close to zero for normal BigGAN (so
without NDA training, the discriminator cannot distinguish real and Jigsaw samples well), and (b)

centered at a positive number (logit 10) for our method (NDA-BigGAN). Following our �ndings,
in our remaining experiments we use Jigsaw, Cutout, Stitch, Mixup and Cutmix as they achieve
signi�cant improvements when used as NDA for unconditional image generation on CIFAR-10.

Table 7.2 shows the FID scores for BigGAN when trained with �ve types of negative data
augmentation on four di�erent benchmarks. Almost all the NDA augmentations improve the
baseline across datasets. For all the datasets except CIFAR-100, λ = 0.25, whereas for CIFAR-100
it is 0.5. We show the e�ect of λ on CIFAR-10 performance in Appendix B.5.6. We additionally
performed an experiment using a mixture of augmentation policy. The results (FID 16.24) were
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Table 7.1: FID scores over CIFAR-10, using di�erent transformations as PDA and NDA in BigGAN.
The results indicate that some transformations yield better results when used as NDA. The common
feature of such transformations is they all spatially corrupt the images.

w/o Aug. Jigsaw Cutout Stitch Mixup Cutmix Random Crop Random Flip Gaussian

PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA

18.64 98.09 12.61 79.72 14.69 108.69 13.97 70.64 17.29 90.81 15.01 20.02 15.05 16.65 124.32 44.41 18.72

Table 7.2: Comparison of FID scores of di�erent types of NDA, for unconditional image gen-
eration on various datasets. The numbers in bracket represent the corresponding image resolution
in pixels. Jigsaw consistently achieves the best or second best result.

BigGAN Jigsaw Stitching Mixup Cutout Cutmix CR-BigGAN

CIFAR-10 (32) 18.64 12.61 13.97 17.29 14.69 15.01 14.56
CIFAR-100 (32) 22.19 19.72 20.99 22.21 22.08 20.78 –
CelebA (64) 38.14 37.24 37.17 37.51 37.39 37.46 –
STL10 (32) 26.80 23.94 26.08 24.45 24.91 25.34 –

better than the baseline method (18.64) but not as good as using a single strategy.
Conditional Image Generation. We also investigate the bene�ts of NDA in conditional

image generation using BigGAN. The results are shown in Table 7.3. In this setting as well, NDA
gives a signi�cant boost over the baseline model. We again use λ = 0.25 for CIFAR-10 and λ = 0.5

for CIFAR-100. For both unconditional and conditional setups we �nd the Jigsaw and Stitching
augmentations to achieve a better FID score than the other augmentations.

Table 7.3: FID scores for conditional image generation using di�erent NDAs.2

BigGAN Jigsaw Stitching Mixup Cutout Cutmix CR-BigGAN

C-10 11.51 9.42 9.47 13.87 10.52 10.3 11.48
C-100 15.04 14.12 13.90 15.27 14.21 13.99 –

Image Translation. Next, we apply the NDA method to image translation. In particular, we
use the Pix2Pix model [IZZE17] that can perform image-to-image translation using GANs provided
paired training data. Here, the generator is conditioned on an image I , and the discriminator takes
as input the concatenation of generated/real image and I . We use Pix2Pix for semantic segmentation
on Cityscapes dataset [COR+16] (i.e. photos→ labels). Table 7.4 shows the quantitative gains
obtained by using Jigsaw NDA3 while Figure B.7 in Appendix B.5.4 highlights the qualitative

2We use a PyTorch code for BigGAN. The number reported in [BDS18] for C-10 is 14.73.
3We use the o�cial PyTorch implementation and show the best results.

7_nda:https://github.com/ajbrock/BigGAN-PyTorch
7_nda:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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improvements. The NDA-Pix2Pix model avoids noisy segmentation on objects including buildings
and trees.

Table 7.4: Results on CityScapes, using per
pixel accuracy (Pp.), per class accuracy (Pc.) and
mean Intersection over Union (mIOU). We com-
pare Pix2Pix and its NDA version.

Metric Pp. Pc. mIOU

Pix2Pix
(cGAN) 0.80 0.24 0.27

NDA
(cGAN) 0.84 0.34 0.28

Pix2Pix
(L1+cGAN) 0.72 0.23 0.18

NDA
(L1+cGAN) 0.75 0.28 0.22

Table 7.5: AUROC scores for di�erent OOD
datasets. OOD-1 contains di�erent datasets,
while OOD-2 contains the set of 19 di�erent cor-
ruptions in CIFAR-10-C [HD18] (the average score
is reported).

BigGAN Jigsaw EBM

OOD-1

DTD 0.70 0.69 0.48
SVHN 0.75 0.61 0.63
Places-365 0.35 0.58 0.68
TinyImageNet 0.40 0.62 0.67
CIFAR-100 0.63 0.64 0.50
Average 0.57 0.63 0.59

OOD-2 CIFAR-10-C 0.56 0.63 0.60

Anomaly Detection. As another added bene�t of NDA for GANs, we utilize the output scores
of the BigGAN discriminator for anomaly detection. We experiment with 2 di�erent types of
OOD datasets. The �rst set consists of SVHN [NWC+11], DTD [CMK+14], Places-365 [ZLK+17],
TinyImageNet, and CIFAR-100 as the OOD datapoints following the protocol in [DM19, HMD18].
We train BigGAN w/ and w/o Jigsaw NDA on the train set of CIFAR-10 and then use the output
value of discriminator to classify the test set of CIFAR-10 (not anomalous) and di�erent OOD
datapoints (anomalous) as anomalous or not. We use the AUROC metric as proposed in [HG16] to
evaluate the anomaly detection performance. Table 7.5 compares the performance of NDA with
a likelihood based model (Energy Based Models (EBM [DM19]). Results show that Jigsaw NDA
performs much better than baseline BigGAN and other generative models. We did not include
other NDAs as Jigsaw achieved the best results.

We consider the extreme corruptions in CIFAR-10-C [HD18] as the second set of OOD datasets.
It consists of 19 di�erent corruptions, each having 5 di�erent levels of severity. We only consider
the corruption of highest severity for our experiment, as these constitute a signi�cant shift from
the true data distribution. Averaged over all the 19 di�erent corruptions, the AUROC score for
the normal BigGAN is 0.56, whereas the BigGAN trained with Jigsaw NDA achieves 0.63. The
histogram of di�erence in discriminator’s output for clean and OOD samples are shown in Figure
B.8 in the appendix. High di�erence values imply that the Jigsaw NDA is better at distinguishing
OOD samples than the normal BigGAN.
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7.6 Representation Learning using Contrastive Loss and NDA

Unsupervised Learning on Images. In this section, we perform experiments on three bench-
marks: (a) CIFAR10 (C10), (b) CIFAR100 (C100), and (c) ImageNet-100 [DDS+09] to show the
bene�ts of NDA on representation learning with the contrastive loss function. In our experiments,
we use the momentum contrast method [HFW+19], MoCo-V2, as it is currently the state-of-the-art
model on unsupervised learning on ImageNet. For C10 and C100, we train the MoCo-V2 model for
unsupervised learning (w/ and w/o NDA) for 1000 epochs. On the other hand, for ImageNet-100,
we train the MoCo-V2 model (w/ and w/o NDA) for 200 epochs. To evaluate the representations, we
train a linear classi�er on the representations on the same dataset with labels. Table 7.6 shows the
top-1 accuracy of the classi�er. We �nd that across all the three datasets, di�erent NDA approaches
outperform MoCo-V2. While Cutout NDA performs the best for C10, the best performing NDA for
C100 and ImageNet-100 are Jigsaw and Mixup respectively. Figure B.9 compares the cosine distance
of the representations learned w/ and w/o NDA (jigsaw) and shows that jigsaw and normal images
are projected far apart from each other when trained using NDA whereas with original MoCo-v2
they are projected close to each other.

Table 7.6: Top-1 accuracy results on image recognition w/ and w/o NDA on MoCo-V2.

MoCo-V2 Jigsaw Stitching Cutout Cutmix Mixup

CIFAR-10 91.20 91.66 91.59 92.26 91.51 91.36
CIFAR-100 69.63 70.17 69.21 69.81 69.83 69.99
ImageNet-100 69.41 69.95 69.54 69.77 69.61 70.01

Transfer Learning forObjectDetection. We transfer the network pre-trained over ImageNet-
100 for the task of Pascal-VOC object detection using a Faster R-CNN detector (C4 backbone) [RHGS15].
We �ne-tune the network on Pascal VOC 2007+2012 trainval set and test it on the 2007 test set.
The baseline MoCo achieves 38.47 AP, 65.99 AP50, 38.81 AP75 whereas the MoCo trained with
mixup NDA gets 38.72 AP, 66.23 AP50, 39.16 AP75 (an improvement of ≈ 0.3).

Unsupervised Learning on Videos. In this section, we investigate the bene�ts of NDA in
self-supervised learning of spatio-temporal embeddings from video, suitable for human action
recognition. We apply NDA to Dense Predictive Coding [HXZ19], which is a single stream (RGB
only) method for self-supervised representation learning on videos. For videos, we create NDA
samples by performing the same transformation on all frames of the video (e.g. the same jigsaw
permutation is applied to all the frames of a video). We evaluate the approach by �rst training the
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DPC model with NDA on a large-scale dataset (UCF101), and then evaluate the representations by
training a supervised action classi�er on UCF101 and HMDB51 datasets. As shown in Table 7.7,
Jigsaw and Cutmix NDA improve downstream task accuracy on UCF-101 and HMDB-51, achieving
new state-of-the-art performance among single stream (RGB only) methods for self-supervised
representation learning (when pre-trained using UCF-101).

Table 7.7: Top-1 accuracy results on action recognition in videos w/ and w/o NDA in DPC.

DPC Jigsaw Stitching Cutout Cutmix Mixup

UCF-101 (Pre-trained on UCF-101) 61.35 64.54 66.07 64.52 63.52 63.65
HMDB51 (Pre-trained on UCF-101) 45.31 46.88 45.31 45.31 48.43 43.75

7.7 Related work

In several machine learning settings, negative samples are produced from a statistical generative
model. [SHPL19] aim to generate negative data using GANs for semi-supervised learning and
novelty detection while we are concerned with e�ciently creating negative data to improve gener-
ative models and self-supervised representation learning. [HKKT18] also propose an alternative
theoretical framework that relies on access to an oracle which classi�es a sample as valid or not,
but do not provide any practical implementation. [BLC18] use adversarial training to generate hard
negatives that fool the discriminator for NLP tasks whereas we obtain NDA data from positive
data to improve image generation and representation learning. [HCDLZ18] use a GAN to learn the
negative data distribution with the aim of classifying positive-unlabeled (PU) data whereas we do
not have access to a mixture data but rather generate negatives by transforming the positive data.

In contrastive unsupervised learning, common negative examples are ones that are assumed
to be further than the positive samples semantically. Word2Vec [MSC+13] considers negative
samples to be ones from a di�erent context and CPC-based methods [vdOLV18] such as momentum
contrast [HFW+19], the negative samples are data augmentations from a di�erent image. Our
work considers a new aspect of “negative samples” that are neither generated from some model,
nor samples from the data distribution. Instead, by applying negative data augmentation (NDA)
to existing samples, we are able to incorporate useful inductive biases that might be di�cult to
capture otherwise [ZRY+18].
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7.8 Discussion

We proposed negative data augmentation as a method to incorporate prior knowledge through
out-of-distribution (OOD) samples. NDAs are complementary to traditional data augmentation
strategies, which are typically focused on in-distribution samples. Using the NDA framework, we
interpret existing image transformations (e.g., jigsaw) as producing OOD samples and develop
new learning algorithms to leverage them. Owing to rigorous mathematical characterization
of the NDA assumption, we are able to theoretically analyze their properties. As an example,
we bias the generator of a GAN to avoid the support of negative samples, improving results on
conditional/unconditional image generation tasks. Finally, we leverage NDA for unsupervised
representation learning in images and videos. By integrating NDA into MoCo-v2 and DPC, we
improve results on image and action recognition on CIFAR10, CIFAR100, ImageNet-100, UCF-101,
and HMDB-51 datasets.



Chapter 8

Generation with Learned Conditions

In the previous chapters, we focused on improving the supervised learning pipeline for generative
adversarial networks (GANs), where the supervised learning procedure is tied more closely to
generation quality. However, unconditional image generation does not highlight all the tasks
that can be useful; for example, there can be cases where we wish to generate from certain
conditions. Conditional generative models of high-dimensional images have many applications, but
supervision signals from conditions to images can be expensive to acquire; this makes it di�cult to
train conditional generative models from input-label pairs.

In this chapter, we describe Di�usion-Decoding models with Contrastive representations (D2C),
a paradigm for training unconditional variational autoencoders (VAEs) for few-shot conditional
image generation. D2C uses a learned di�usion-based prior over the latent representations to
improve generation and contrastive self-supervised learning to improve representation quality.
D2C can adapt to novel generation tasks conditioned on labels or manipulation constraints, by
learning from as few as 100 labeled examples.

On conditional generation from new labels, D2C achieves superior performance over state-of-
the-art VAEs and di�usion models. On conditional image manipulation, D2C generations are two
orders of magnitude faster to produce over StyleGAN2 ones and are preferred by 50%− 60% of
the human evaluators in a double-blind study.

This chapter is based on [SSME21] with materials from [SME20]. Abhishek Sinha and Chenlin
Meng contributed signi�cantly to this chapter. My contributions include conceving the idea,
implementing the di�usion model, executed most of the experiments on CIFAR-10/100 and image
manipulation experiments and writing the chapter.

98
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8.1 Introduction

Generative models trained on large amounts of unlabeled data have achieved great success in
various domains including images [BDS18, KLA+20, ROV19, HJA20], text [LGL+20, AABS19],
audio [DJP+20, PPZS20, vdODZ+16, MEHS21], and graphs [GZE19, NSS+20]. However, down-
stream applications of generative models are often based on various conditioning signals, such as
labels [MO14], text descriptions [MPBS15], reward values [YLY+18], or similarity with existing
data [IZZE17]. While it is possible to directly train conditional models, this often requires large
amounts of paired data [LMB+14, RPG+21] that are costly to acquire. Hence, it would be desirable
to learn conditional generative models using large amounts of unlabeled data and as little paired
data as possible.

Contrastive self-supervised learning (SSL) methods can greatly reduce the need for labeled
data in discriminative tasks by learning e�ective representations from unlabeled data [vdOLV18,
HFW+19, GSA+20], and have also been shown to improve few-shot learning [Hen20]. It is therefore
natural to ask if they can also be used to improve few-shot generation. Latent variable generative
models (LVGM) are a natural candidate for this, since they already involve a low-dimensional,
structured latent representation of the data they generate. However, popular LVGMs, such as gen-
erative adversarial networks (GANs, [GPAM+14, KLA+20]) and di�usion models [HJA20, SME20],
lack explicit tractable functions to map inputs to representations, making it di�cult to optimize
latent variables with SSL. Variational autoencoders (VAEs, [KW13, RM15]), on the other hand, can
naturally adopt SSL through their encoder model, but they typically have worse sample quality.

In this paper, we propose Di�usion-Decoding models with Contrastive representations (D2C),
a special VAE that is suitable for conditional few-shot generation. D2C uses contrastive self-
supervised learning methods to obtain a latent space that inherits the transferrability and few-shot
capabilities of self-supervised representations. Unlike other VAEs, D2C learns a di�usion model
over the latent representations. This latent di�usion model ensures that D2C uses the same latent
distribution for both training and generation. We provide a formal argument to explain why
this approach may lead to better sample quality than existing hierarchical VAEs. We further
discuss how to apply D2C to few-shot conditional generation where the conditions are de�ned
through labeled examples and/or manipulation constraints. Our approach combines a discriminative
model providing conditioning signal and generative di�usion model over the latent space, and is
computationally more e�cient than methods that act directly over the image space (Figure 8.1).

We evaluate and compare D2C with several state-of-the-art generative models over 6 datasets.
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Figure 8.1: Few-shot conditional generation with the unconditional D2C model (left). With a
recognition model over the latent space (middle), D2C can generate samples for novel conditions,
such as image manipulation (right). These conditions can be de�ned with very few labels.

On unconditional generation, D2C outperforms state-of-the-art VAEs and is competitive with
di�usion models under similar computational budgets. On conditional generation with 100 labeled
examples, D2C signi�cantly outperforms state-of-the-art VAE [VK20] and di�usion models [SME20].
D2C can also learn to perform certain image manipulation tasks from as few as 100 labeled examples.
Notably, for manipulating images, D2C is two orders of magnitude faster than StyleGAN2 [ZSZZ20]
and preferred by 50%− 60% of human evaluations, which to our best knowledge is the �rst for
any VAE model.

8.2 Background

Self-supervised learning of representations In self-supervised learning (SSL), representations
are learned by completing certain pretext tasks that do not require extra manual labeling [NF16,
DCLT18]; these representations can then be applied to other downstream tasks, often in few-shot or
zero-shot scenarios. In particular, contrastive representation learning encourages representations
to be closer between “positive” pairs and further between “negative” pairs; contrastive predictive
coding (CPC, [vdOLV18]), based on multi-class classi�cation, have been commonly used in state-
of-the-art methods [HFW+19, CFGH20, CXH21, CKNH20, SE20b]. Other non-contrastive methods
exist, such as BYOL [GSA+20] and SimSiam [CH20], but they usually require additional care to
prevent the representation network from collapsing.
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8.3 Problem Statement

Few-shot conditional generation Our goal is to learn an unconditional generative model pθ(x)

such that it is suitable for conditional generation. Let C(x, c, f) describe an event that “f(x) = c”,
where c is a property value and f(x) is a property function that is unknown at training. In
conditional generation, our goal is to sample x such that the event C(x, c, f) occurs for a chosen
c. If we have access to some “ground-truth” model that gives us p(C|x) := p(f(x) = c|x), then
the conditional model can be derived from Bayes’ rule: pθ(x|C) ∝ p(C|x)pθ(x). These properties
c include (but are not limited to1) labels [MO14], text descriptions [MPBS15, RAY+16], noisy or
partial observations [CRT06, AAH19, KS20, DDJD21], and manipulation constraints [PZW+20]. In
many cases, we do not have direct access to the true f(x), so we need to learn an accurate model
from labeled data [BV18] (e.g., (c,x) pairs).

Desiderata Many existing methods are optimized for some known condition (e.g., labels in
conditional GANs [BDS18]) or assume abundant pairs between images and conditions that can be
used for pretraining (e.g., DALL-E [RPG+21] and CLIP [RKH+21] over image-text pairs). Neither
is the case in this paper, as we do not expect to train over paired data.

While high-quality latent representations are not essential to unconditional image generation
(e.g., autoregressive [vdOKK16], energy-based [DM19], and some di�usion models [HJA20]), they
can be bene�cial when we wish to specify certain conditions with limited supervision signals,
similar to how SSL representations can reduce labeling e�orts in downstream tasks. A compelling
use case is detecting and removing biases in datasets via image manipulation, where we should not
only address well-known biases a-priori but also address other hard-to-anticipate biases, adapting
to societal needs [Naj20].

Therefore, a desirable generative model should not only have high sample quality but also
contain informative latent representations.

8.4 Denoising Di�usion Implicit Models

Di�usion models [SDWMG15, HJA20, SME20] produce samples by reversing a Gaussian di�usion
process. We use the index α ∈ [0, 1] to denote the particular noise level of an noisy observation
x(α) =

√
αx +

√
1− αε, where x is the clean observation and ε ∼ N (0, I) is a standard Gaussian

distribution; as α→ 0, the distribution of x(α) converges toN (0, I). Di�usion models are typically
1When C refers to an event that is always true, we recover unconditioned generation.
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Table 8.1: A comparison of several common paradigms for generative modeling. [Explicit x→ z]:
the mapping from x to z is directly trainable, which enables SSL; [No prior hole]: latent distributions
used for generation and training are identical (Sec. 8.5.2), which improves generation; [Non-
adversarial]: training procedure does not involve adversarial optimization, which improves training
stability.

Model family Explicit x→ z No prior hole Non-Adversarial
(Enables SSL) (Better generation) (Stable training)

VAE [KW13, RM15], NF [DKB14] 4 7 4
GAN [GPAM+14] 7 4 7
BiGAN [DKD16, DBP+16] 4 4 7
DDIM [SME20] 7 4 4

D2C 4 4 4

parametrized as reverse noise models εθ(x(α), α) that predict the noise component of x(α) given a
noise level α, and trained to minimize ‖εθ(x(α), α) − ε‖22, the mean squared error loss between
the true noise and predicted noise. Given any non-increasing series {αi}Ti=0 between 0 and 1, the
di�usion objective for a clean sample from the data x is:

`di�(x;w, θ) :=

T∑
i=1

w(αi)Eε∼N (0,I)[‖ε− εθ(x(αi), αi)‖22], x(αi) :=
√
αix +

√
1− αiε (8.1)

where w : {αi}Ti=1 → R+ controls the loss weights for each α. When w(α) = 1 for all α, we
recover the denoising score matching objective for training score-based generative models [SE19c].

Given an initial sample x0 ∼ N (0, I), di�usion models acquires clean samples (i.e., samples
of x1) through a gradual denoising process, where samples with reducing noise levels α are
produced (e.g., x0 → x0.3 → x0.7 → x1). In particular, Denoising Di�usion Implicit Models
(DDIMs, [SME20]) uses an Euler discretization of some neural ODE [CRBD18] to produce samples
(Figure 8.2, left).

For conciseness, we use the notation p(α)(x(α)) to denote the marginal distribution of x(α)

under the di�usion model, and p(α1,α2)(x(α2) | x(α1)) to denote the di�usion sampling process from
x(α1) to x(α2) (assuming α1 < α2). This notation abstracts away the exact sampling procedure of
the di�usion model, which depends on choices of α.
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8.4.1 Training di�usion models

We use the notations in [SME20] to denote the α values and consider the forward di�usion model
in [HJA20]; a non-Markovian version that motivates other sampling procedures can be found in
[SME20], but the training procedure is largely identical. We refer to the reader to these two papers
for more details.

First, we de�ne the following di�usion forward process for a series {αt}Tt=0:

q(x(α1:T )|x(α0)) :=
T∏
t=1

q(x(αt)|x(αt−1)), (8.2)

q(x(αt)|x(αt−1)) := N
(√

αt
αt−1

x(αt−1),

(
1− αt

αt−1

)
I

)
, (8.3)

and from standard derivations for Gaussian we have that:

q(x(αt−1)|x(αt),x(α0)) = N
( √

αt−1 − αt
1− αt

x(α0) +
αt(1− αt−1)

αt−1(1− αt)
x(αt)︸ ︷︷ ︸

µ̃(x(αt),x(α0);αt,αt−1)

,
1− αt−1

1− αt

(
1− αt

αt−1

)
I

)
.

(8.4)

As a variational approximation to the above, [HJA20] considered a speci�c type of pθ(x(αt−1)|x(αt)):

pθ(x
(αt−1)|x(αt)) = N

(
µθ(x

(αt);αt, αt−1), (σ(αt))2I
)
, (8.5)

where µθ and σ(αt) are parameters, and we remove the superscript of pθ to indicate that there are
no additional discretization steps in between (the sampling process is explicitly de�ned). Then, we
have the standard variational objective as follows:

L := Eq

[
log q(x(αT )|x(α0)) +

T∑
t=2

log q(x(αt−1)|x(αt),x(α0))−
T∑
t=1

log p
(αt,αt−1)
θ (x(αt−1)|x(αt))

]

≡ Eq

 T∑
t=2

DKL(q(x(αt−1)|x(αt),x(α0)))‖pθ(x(αt−1)|x(αt)))︸ ︷︷ ︸
Lt−1

− log pθ(x
(α0)|x(α1))

 ,
where≡ denotes “equal up to a constant that does not depend on θ” and eachLt−1 is a KL divergence
between two Gaussian distributions. Let us assume that the standard deviation of pθ(x(αt−1)|x(αt))
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is equal to that of q(x(αt−1)|x(αt),x(α0))), which we denote as σ(αt). And thus:

Lt−1 = Eq
[

1

2(σ(αt))2
‖µθ(x(αt);αt, αt−1)− µ̃(x(αt),x(α0);αt, αt−1)‖22

]
. (8.6)

With a particular reparametrization from µθ to εθ (which tries to model the noise vector at αt):

µθ(x
(αt);αt, αt−1) =

√
αt−1

αt

(
x(αt) −

√
αt−1 − αt√
(1− αt)αt

· εθ(x(αt);αt)

)
, (8.7)

the objective function can be simpli�ed to:

Lt−1 = Ex0,ε

[
(αt−1 − αt)

2(σ(αt))2(1− αt)αt
‖ε− εθ(x(αt);αt, αt−1)‖22

]
(8.8)

where x(αt) =
√
αtx0 +

√
1− αtε. Intuitively, this is a weighted sum of mean-square errors

between the noise model εθ and the actual noise ε. Other weights can also be derived with di�erent
forward processes that are non-Markovian [SME20], and in practice, setting the weights to 1 is
observed to achieve decent performance for image generation.

8.4.2 DDIM sampling procedure

In this section, we discuss the detailed sampling procedure from x(0) ∼ N (0, I) (which is the
distribution with “all noise”2) to x(1) (which is the model distribution with “no noise”). More
speci�cally, we discuss a deterministic sampling procedure, which casts the generation procedure
as an implicit model [SME20]. Compared to other procedures (such as the one in DDPM [HJA20]),
this has the advantage of better sample quality when few steps are allowed to produce each
sample, as well as a near-invertible mapping between x(0) and x(1). We describe this procedure in
Algorithm 2, where we can choose di�erent series of α to control how many steps (and through
which steps) we wish to draw a sample. The DDIM sampling procedure corresponds to a particular
discretization to an ODE, we note that it is straightforward to also de�ne the sampling procedure
between any two α values. Similarly, given an observation x(1) we can obtain the corresponding
latent code x(0) by sampling running Algorithm 2 with the sequence of α reversed.

2Technically, the maximum noise level αT should have αT → 0 but not equal to 0, but we can approximate the
distribution of x(αT ) with that of x(0) arbitrarily well in practice.
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Algorithm 2 Sampling with the DDIM procedure
1: Input: non-increasing series {αt}Tt=0 with αT = 0 and α0 = 1.
2: Sample x(1) ∼ N (0, I).
3: for k ← T to 1 do
4: Update x(αt−1) from x(αt) such that√

1

αt−1
x(αt−1) =

√
1

αt
x(αt) +

(√
1− αt−1

αt−1
−
√

1− αt
αt

)
· εθ(x(αt);αt)

5: end for
6: Output x(0).

8.5 Di�usion-DecodingGenerativeModelswithContrastive Learn-

ing

While VAEs are ideal for learning rich latent representations due to being able to incorporate SSL
within the encoder, they generally do not achieve the same level of sample quality as GANs and
di�usion models.

To address this issue, we present Di�usion-Decoding generative models with Contrastive Learn-
ing (D2C), an extension to VAEs with high-quality samples and high-quality latent representations,
and are thus well suited to few-shot conditional generation. Moreover, unlike GAN-based methods,
D2C does not involve unstable adversarial training (Table 8.1).

As its name suggests, the generative model for D2C has two components – di�usion and
decoding; the di�usion component operates over the latent space and the decoding component
maps from latent representations to images. Let us use the α index notation for di�usion random
variables: z(0) ∼ p(0)(z(0)) := N (0, I) is the “noisy” latent variable with α = 0, and z(1) is the
“clean” latent variable with α = 1. The generative process of D2C, which we denote pθ(x|z(0)), is
then de�ned as:

z(0) ∼ p(0)(z(0)), z(1) ∼ p(0,1)
θ (z(1)|z(0))︸ ︷︷ ︸

di�usion

, x ∼ pθ(x|z(1))︸ ︷︷ ︸
decoding

, (8.9)

where p(0)(z(0)) = N (0, I) is the prior distribution for the di�usion model, p(0,1)
θ (z(1)|z(0)) is the

di�usion process from z(0) to z(1), and pθ(x|z(1)) is the decoder from z(1) to x. Intuitively, D2C
models produce samples by drawing z(1) from a di�usion process and then decoding x from z(1).
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Decoding

Encoding

Diffusion

Figure 8.2: Illustration of components of a D2 model. On top of the encoding and decoding
between x and z(1), we use a di�usion model to generate z(1) from a Gaussian z(0). The red lines
describe several smooth ODE trajectories from α = 0 to α = 1 corresponding to DDIM.

In order to train a D2C model, we use an inference model qφ(z(1)|x) that predicts proper
z(1) latent variables from x; this can directly incorporate SSL methods [XLZ+21], leading to the
following objective:

LD2C(θ, φ;w) := LD2(θ, φ;w) + λLC(qφ), (8.10)

LD2(θ, φ;w) := Ex∼pdata,z(1)∼qφ(z(1)|x)[− log p(x|z(1)) + `di�(z(1);w, θ)], (8.11)

where `di� is de�ned as in equation 8.1, LC(qφ) denotes any contrastive predictive coding ob-
jective [vdOLV18] with rich data augmentations [HFW+19, CFGH20, CXH21, CKNH20, SE20b]
(details in Appendix B.6.1) and λ > 0 is a weight hyperparameter. The �rst two terms, which we
call LD2, contains a “reconstruction loss” (− log p(x|z(1))) and a “di�usion loss” over samples of
z(1) ∼ qφ(z(1)|x). We illustrate the D2C generative and inference models in Figure 8.2, and its
training procedure in Appendix B.6.1.

8.5.1 Relationship to maximum likelihood

The D2 objective (LD2) appears similar to the original VAE objective (LVAE). Here, we make an
informal statement that the D2 objective function is deeply connected to the variational lower
bound of log-likelihood; we present the full statement and proof in Appendix A.6.1.

Theorem 12. (informal) For any valid {αi}Ti=0, there exists some weights ŵ : {αi}Ti=1 → R+ for

the di�usion objective such that −LD2 is a variational lower bound to the log-likelihood, i.e.,

−LD2(θ, φ; ŵ) ≤ Epdata [log pθ(x)], (8.12)
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where pθ(x) := Ex0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.

Proof. (sketch) The di�usion term `diff upper bounds the KL divergence between qφ(z1|x) and
p

(1)
θ (z(1)) for suitable weights [HJA20, SME20], which recovers a VAE objective.

8.5.2 D2C models address latent posterior mismatch in VAEs

While D2C is a special case of VAE, we argue that D2C is non-trivial in the sense that it ad-
dresses a long-standing problem in VAE methods [TW17, TIY+19], namely the mismatch be-
tween the prior distribution pθ(z) and the aggregate (approximate) posterior distribution qφ(z) :=

Epdata(x)[qφ(z|x)]. A mismatch could create “holes” [RLM18, HJ16, ASKV20] in the prior that the
aggregate posterior fails to cover during training, resulting in worse sample quality, as many latent
variables used during generation are likely to never have been trained on. We formalize this notion
in the following de�nition.

De�nition 1 (Prior hole). Let p(z), q(z) be two distributions with supp(q) ⊆ supp(p). We say that

q has an (ε, δ)-prior hole with respect to (the prior) p for ε, δ ∈ (0, 1), δ > ε, if there exists a set

S ∈ supp(P ), such that
∫
S p(z) dz ≥ δ and

∫
S q(z) dz ≤ ε.

Intuitively, if qφ(z) has a prior hole with large δ and small ε (e.g., inversely proportional to the
number of training samples), then it is very likely that latent variables within the hole are never
seen during training (small ε), yet frequently used to produce samples (large δ). Most existing
methods address this problem by optimizing certain statistical divergences between qφ(z) and
pθ(z), such as the KL divergence or Wasserstein distance [TBGS17]. However, we argue in the
following statement that prior holes might not be eliminated even if we optimize certain divergence
values to be reasonably low, especially when qφ(z) is very �exible. We present the formal statement
and proof in Appendix A.6.2.

Theorem 13. (informal) Let pθ(z) = N (0, 1). For any ε > 0, there exists a distribution qφ(z) with

an (ε, 0.49)-prior hole, such that DKL(qφ‖pθ) ≤ log 23andW2(qφ, pθ) < γ for any γ > 0, where

W2 is the 2-Wasserstein distance.

Proof. (sketch) We construct a qφ that satis�es these properties (see �gure). First, we truncate the
Gaussian and divide them into regions with same probability mass; then we support qφ over half of
these regions (so δ > 0.49); �nally, we show that the divergences are small enough.

3This is reasonably low for realistic VAE models (NVAE [VK20] reports a KL divergence of around 2810 nats).
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p(z)
q(z)

In contrast to addressing prior holes by optimization, di�usion models eliminate prior holes by
construction, since the di�usion process from z(1) to z(0) is constructed such that the distribution
of z(α) always converges to a standard Gaussian as α→ 0. As a result, the distribution of latent
variables used during training is arbitrarily close to that used in generation4, which is also the case
in GANs. Therefore, our argument provides an explanation as to why we observe better sample
quality results from GANs and di�usion models than VAEs and NFs.

8.6 Few-shot Conditional Generation with D2C

In this section, we discuss how D2C can be used to learn to perform conditional generation from few-
shot supervision. We note that D2C is only trained on images and not with any other data modalities
(e.g., image-text pairs [RPG+21]) or supervision techniques (e.g., meta-learning [CD19, BV18]).

Algorithm 3 Conditional generation with D2C
1: Input n examples {(xi, ci)}ni=1, property c.
2: Acquire latents z(1)i ∼ qφ(z(1)|xi) for i ∈ [n];
3: Train model rψ(c|z(1)) over {(z(1)i , ci)}ni=1

4: Sample latents with ẑ(1) ∼ rψ(c|z(1)) · p(1)θ (z(1))

(unnormalized);
5: Decode x̂ ∼ pθ(x|ẑ(1)).
6: Output x̂.

Algorithm We describe the general algo-
rithm for conditional generation from a few
images in Algorithm 3. With a model over
the latent space (denoted as rψ(c|z(1))), we
draw conditional latents from an unnormal-
ized distribution with the di�usion prior (line
4). This can be implemented in many ways
such as rejection sampling or Langevin dynam-
ics [NCB+17, SSDK+20, DN21].

Conditions from labeled examples Given a few labeled examples, we wish to produce diverse
samples with a certain label. For labeled examples we can directly train a classi�er over the
latent space, which we denote as rψ(c|z(1)) with c being the class label and z(1) being the latent

4We expand this argument in Appendix A.6.2.
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representation of x from qφ(z(1)|x). If these examples do not have labels (i.e., we merely want to
generate new samples similar to given ones), we can train a positive-unlabeled (PU) classi�er [EN08]
where we assign “positive” to the new examples and “unlabeled” to training data. Then we use
the classi�er with the di�usion model pθ(z(1)|z(0)) to produce suitable values of z(1), such as by
rejecting samples from the di�usion model that has a small rψ(c|z(1)).

Conditions from manipulation constraints Given a few labeled examples, here we wish to
learn how to manipulate images. Speci�cally, we condition over the event that “x has label c but is
similar to image x̄”. Here rψ(c|z(1)) is the unnormalized product between the classi�er conditional
probability and closeness to the latent z̄(1) of x̄ (e.g., measured with RBF kernel). We implement
line 4 of Alg. 3 with a Lanvegin-like procedure where we take a gradient step with respect to the
classi�er probability and then correct this gradient step with the di�usion model. Unlike many
GAN-based methods [CK17, PHS+18, WLZ+18, IZZE17, XYXW21], D2C does not need to optimize
an inversion procedure at evaluation time, and thus the latent value is much faster to compute;
D2C is also better at retaining �ne-grained features of the original image due to the reconstruction
loss.

Detailed Algorithms In order to perform few-shot conditional generation, we need to imple-
ment line 4 in Algorithm 3, where an unnormalized (energy-based) model is de�ned over the
representations. After we have de�ned the energy-based model, we implement a procedure to
draw samples from this unnormalized model. We note that our approach (marked in teal boxes) is
only one way of drawing valid samples, and not necessarily the optimal one. Furthermore, these
implementations can also be done over the image space (which is the case for DDIM-I), which may
costs more to compute than over the latent space since more layers are needed in a neural network
to process it.

For generation from labels, we would de�ne the energy-based model over latents as the product
of two components: the �rst is the “prior” over z(1) as de�ned by the di�usion model and the
second is the “likliehood” of the label c being true given the latent variable z(1). This places high
energy values to the latent variables that are likely to occur under the di�usion prior (so generated
images are likely to have high quality) as well as latent variables that have the label c. To sample
from this energy-based model, we perform a rejection sampling procedure, where we reject latent
samples from the di�usion model that have low discrminator values. This procedure is describe in
Algorithm 4.
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Algorithm 4 Generate from labels
Input model rψ(c|z(1)), target label c.

De�ne latent energy-based model

E(ẑ(1)) = rψ(c|ẑ(1)) · p(1)θ (ẑ(1))

Sample from E(ẑ(1))

while True do
Sample ẑ(1) ∼ p(1)θ (ẑ(1));
Sample u ∼ Uniform(0, 1);
If u < rψ(c|ẑ(1)) then break.

end while

Output x̂ ∼ pθ(x|ẑ(1)).

For generation from manipulation constraints, we need to further de�ne a prior that favors
closeness to the given latent variable so that the manipulated generation is close to the given image
except for the label z. If the latent variable for the original image is z(1) ∼ qφ(z(1)|x), then we
de�ne the closeness via the L2 distance between the it and the manipulated latent. We obtain the
energy-based model by multiplying this with the di�usion “prior” and the classi�er “likelihood”.
Then, we approximately draw samples from this energy by taking a gradient step from the original
latent value z(1) and then regularizing it with the di�usion prior; this is described in Algorithm 5.
A step size η, di�usion noise magnitude α, and the di�usion steps from α to 1 are chosen as
hyperparameters. We choose one η for each attribute, α ≈ 0.9, and number of discretization steps
to be 55; we tried α ∈ [0.65, 0.9] and found that our results are not very sensitive to values within
this range. We list the η values for each attribute (details in Appendix B.6.2).

We note that a more principled approach is to take gradient with respect to the entire energy
function (e.g., for Langevin dynamics), where the gradient over the DDIM can be computed with
instantaneous change-of-variables formula [CRBD18]; we observe that our current version is
computationally e�cient enough to perform well.

5The results are not particularly sensitive to how the discretization steps are chosen. For example, one can take
0.9 → 0.92 → 0.96 → 0.98 → 0.99 → 1.
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Algorithm 5 Generate from manipulation constraints
Input model rψ(c|z(1)), target label c, original image x.
Acquire latent z(1) ∼ qφ(z(1)|x);
Fit a model rψ(c|z(1)) over {(z(1)i , ci)}ni=1

De�ne latent energy-based model

E(ẑ(1)) = rψ(c|ẑ(1)) · p(1)θ (ẑ(1)) · ‖z(1) − ẑ(1)‖22

Sample from E(ẑ(1)) (approximate)

Choose hyperparameters η > 0, α ∈ (0, 1).
Take a gradient step z̄(1) ← z(1) + η∇zrψ(c|z)|z=z(1) .
Add noise z̃(α) ← √αz̄(1) +

√
1− αε.

Sample ẑ(1) ∼ p
(α,1)
θ (z(1)|z̃(α)) with DDIM, i.e., use the di�usion prior to “de-

noise”.

Output x̂ ∼ pθ(x|ẑ(1)).

8.7 Related Work

Latent variable generative models Most deep generative models explicitly de�ne a latent
representation, except for some energy-based models [Hin02, DM19] and autoregressive mod-
els [vdOKK16, vdODZ+16, BMR+20]. Unlike VAEs and NFs, GANs do not explicitly de�ne an
inference model and instead optimize a two-player game. In terms of sample quality, GANs cur-
rently achieve superior performance over VAEs and NFs, but they can be di�cult to invert even
with additional optimization [KALL17, XSZ+20, BZW+19]. This can be partially addressed by
training reconstruction-based losses with GANs [LSLW16, LLC+17]. Moreover, the GAN training
procedure can be unstable [BLRW16, BDS18, MKKY18], lack a informative objective for measuring
progress [ACB17], and struggle with discrete data [YZWY17]. Di�usion models [DN21] achieves
high sample quality without adversarial training, but its latent dimension must be equal to the
image dimension.

Addressing posterior mismatch in VAEs Most methods address this mismatch problem by
improving inference models [ML16, KSJ+16a, TW16], prior models [TW17, ASKV20, TIY+19], or
objective functions [ZSE17a, ZSE17b, ZSE18b, APF+17, MSJ+15]; all these approaches optimize
the posterior model to be close to the prior. In Section 8.5.2, we explain why these approaches do
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not necessarily remove large “prior holes”, so their sample qualities remain relatively poor even
after many layers [VK20, Chi20]. Other methods adopt a “two-stage” approach [DW19], which �ts
a generative model over the latent space of autoencoders [vdOVK17, ROV19, DJP+20, RPG+21].

Conditional generation with unconditional models To perform conditional generation over
an unconditional LVGM, most methods assume access to a discriminative model (e.g., a classi�er);
the latent space of the generator is then modi�ed to change the outputs of the discriminative model.
The disciminative model can operate on either the image space [NCB+17, PWS+21, DN21] or the
latent space [SGTZ20, XYXW21]. For image space discriminative models, plug-and-play generative
networks [NCB+17] control the attributes of generated images via Langevin dynamics [RR98];
these ideas are also explored in di�usion models [SSDK+20]. Image manipulation methods are
based on GANs often operate with latent space discriminators [SGTZ20, XYXW21]. However, these
methods have some trouble manipulating real images because of imperfect reconstruction [ZZZZ19,
BZW+19]. This is not a problem in D2C since a reconstruction objective is optimized.

8.8 Experiments

We examine the conditional and unconditional generation qualities of D2C over CIFAR-10 [KSH12],
CIFAR-100 [KSH12], fMoW [CFWM18], CelebA-64 [LLWT15], CelebA-HQ-256 [KALL17], and
FFHQ-256 [KLA18]. Our D2C implementation is based on the state-of-the-art NVAE [VK20] autoen-
coder structure, the U-Net di�usion model [HJA20], and the MoCo-v2 contrastive representation
learning method [CFGH20]. We keep the di�usion series hyperparameter {αi}Ti=1 identical to
ensure a fair comparison with di�erent di�usion models. For the contrastive weight hyperparameter
λ in Equation 8.10, we consider the value of λ = 10−4 based on the relative scale between the
LC and LD2; we �nd that the results are relatively insensitive to λ. We use 100 di�usion steps for
DDIM and D2C unless mentioned otherwise, as running with longer steps is not computationally
economical despite tiny gains in FID [SME20]. We include additional training details, such as
architectures, optimizers and learning rates in Appendix B.6.2.

8.8.1 Unconditional generation

For unconditional generation, we measure the sample quality of images using the Frechet Inception
Distance (FID, [HRU+17]) with 50,000 images. In particular, we extensively evaluate NVAE [VK20]
and DDIM [SME20], a competitive VAE model and a competitive di�usion model as baselines
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Table 8.2: Quality of representations and generations with LVGMs.

Model CIFAR-10 CIFAR-100 fMoW
FID ↓ MSE ↓ Acc ↑ FID ↓ MSE ↓ Acc ↑ FID ↓ MSE ↓ Acc ↑

NVAE [VK20] 36.4 0.25 18.8 42.5 0.53 4.1 82.25 0.30 27.7
DDIM [SME20] 4.16 2.5 22.5 10.16 3.2 2.2 37.74 3.0 23.5

D2C (Ours) 10.15 0.76 76.02 14.62 0.44 42.75 44.7 2.33 66.9

Figure 8.3: Generated samples on CIFAR-10, fMoW, and FFHQ.

because we can directly obtain features from them without additional optimization steps6. For
them, we report mean-squared reconstruction error (MSE, summed over all pixels, pixels normalized
to [0, 1]) and linear classi�cation accuracy (Acc., measured in percentage) over z1 features for the
test set.

We report sample quality results7 in Tables 8.2, and 8.3. For FID, we outperform NVAE in all
datasets and outperform DDIM on CelebA-64 and CelebA-HQ-256, which suggests our results are
competitive with state-of-the-art non-adversarial generative models. In Table 8.2, we additionally
compare NVAE, DDIM and D2C in terms of reconstruction and linear classi�cation accuracy.
As all three methods contain reconstruction losses, the MSE values are low and comparable.
However, D2C enjoys much better linear classi�cation accuracy than the other two thanks to
the contrastive SSL component. We further note that training the same contrastive SSL method
without LD2 achieves slightly higher 78.3% accuracy on CIFAR-10. We tried improving this via
ResNet [HZRS15] encoders, but this signi�cantly increased reconstruction error, possibly due to
loss of information in average pooling layers.

6For DDIM, the latent representations x(0) are obtained by reversing the neural ODE process.
7Due to space limits, we place additional CIFAR-10 results in Appendix B.6.3.
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Table 8.3: FID scores over di�erent faces dataset with LVGMs.

Model CelebA-64 CelebA-HQ-256 FFHQ-256

NVAE [VK20] 13.48 40.26 26.02
DDIM [SME20] 6.53 25.6 -

D2C (Ours) 5.7 18.74 13.04

Table 8.4: Sample quality as a function of di�usion steps.

CIFAR-10 CIFAR-100 CelebA-64
Steps 10 50 100 10 50 100 10 50 100

DDPM [HJA20] 41.07 8.01 5.78 50.27 21.37 16.72 33.12 18.48 13.93
DDIM [SME20] 13.36 4.67 4.16 23.34 11.69 10.16 17.33 9.17 6.53
D2C (Ours) 17.71 10.11 10.15 23.16 14.62 14.46 17.32 6.8 5.7

8.8.2 Few-shot conditional generation from examples

We demonstrate the advantage of D2C representations by performing few-shot conditional genera-
tion over labels. We consider two types of labeled examples: one has binary labels for which we
train a binary classi�er; the other is positive-only labeled (e.g., images of female class) for which we
train a PU classi�er. Our goal here is to generate a diverse group of images with a certain label. We
evaluate and compare three models: D2C, NVAE and DDIM. We train a classi�er rψ(c|z) over the
latent space of these models; we also train a image space classi�er and use it with DDIM (denoted as
DDIM-I). We run Algorithm 3 for these models, where line 4 is implemented via rejection sampling.
As our goal is to compare di�erent models, we leave more sophisticated methods [DN21] as future
work.

We consider performing 8 conditional generation tasks over CelebA-64 with 2 binary classi�ers
(trained over 100 samples, 50 for each class) and 4 PU classi�ers (trained over 100 positively labeled
and 10k unlabeled samples). We also report a “naive” approach where we use all the training images
(regardless of labels) and compute its FID with the corresponding subset of images (e.g., all images
versus blond images). In Table 8.5, we report the FID score between generated images (5k samples)
and real images of the corresponding label. These results suggest that D2C outperforms the other
approaches, and is the only one that performs better than the “naive” approach in most cases,
illustrating the advantage of contrastive representations for few-shot conditional generation.
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Table 8.5: FID scores for few-shot conditional generation with various types of labeled examples.
Naive performs very well for non-blond due to class percentages.

Method Classes (% in train set) D2C DDIM NVAE DDIM-I Naive

Binary

Male (42%) 13.44 38.38 41.07 29.03 26.34
Female (58%) 9.51 19.25 16.57 15.17 18.72
Blond (15%) 17.61 31.39 31.24 29.09 27.51
Non-Blond (85%) 8.94 9.67 16.73 19.76 3.77

PU

Male (42%) 16.39 37.03 42.78 19.60 26.34
Female (58%) 12.21 15.42 18.36 14.96 18.72
Blond (15%) 10.09 30.20 31.06 76.52 27.51
Non-Blond (85%) 9.09 9.70 17.98 9.90 3.77

8.8.3 Few-shot conditional generation from manipulation constraints

Finally, we consider image manipulation where we use binary classi�ers that are learned over
50 labeled instances for each class. We perform Amazon Mechanical Turk (AMT) evaluations
over two attributes in the CelebA-256 dataset, blond and red lipstick, over D2C, DDIM, NVAE
and StyleGAN2 [KLA+20] (see Figure 8.4). The evaluation is double-blinded: neither we nor the
evaluators know the correspondence between generated image and underlying model during the
study. We include more details (algorithm, setup and human evaluation) in Appendix B.6.2 and
additional qualitative results (such as beard and gender attributes) in Appendix B.6.3.

In Figure 8.5, we show the percentage of manipulations preferred by AMT evaluators for each
model; D2C slightly outperforms StyleGAN2 for blond and signi�cantly outperforms StyleGAN2
for red lipstick. When we compare D2C with only StyleGAN2, D2C is preferred over 51.5% for
blond and 60.8% for red lipstick. An additional advantage of D2C is that the manipulation is much
faster than StyleGAN2, since the latter requires additional optimization over the latent space to
improve reconstruction [ZSZZ20]. On the same Nvidia 1080Ti GPU, it takes 0.013 seconds to obtain
the latent code in D2C, while the same takes 8 seconds [ZSZZ20] for StyleGAN2 (615× slower). As
decoding is very fast for both models, D2C generations are around two orders of magnitude faster
to produce.

8.9 Discussions

We introduced D2C, a VAE-based generative model with a latent space suitable for few-shot
conditional generation. To our best knowledge, our model is the �rst unconditional VAE to
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Original D2C StyleGAN2 NVAE DDIM

Figure 8.4: Image manipulation results for blond (top) and red lipstick (bottom). D2C is better than
StyleGAN2 at preserving details of the original image, such as eyes, earrings, and background.
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D2C

StyleGAN2

NVAE
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Figure 8.5: AMT evaluation over image manipulations. x-axis shows the percentage that the
evaluator selects the image generated from the corresponding model out of 4 images from each
model.
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demonstrate superior image manipulation performance than StyleGAN2, which is surprising given
our use of a regular NVAE architecture. We believe that with better architectures, such as designs
from StyleGAN2 or Transformers [HZ21], D2C can achieve even better performance. It is also
interesting to formally investigate the integration between D2C and other types of conditions on
the latent space, as well as training D2C in conjunction with other domains and data modalities,
such as text [RPG+21], in a fashion that is similar to semi-supervised learning. Nevertheless, we
note that our model have to be used properly in order to mitigate potential negative societal impacts,
such as deep fakes.
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Inference via Supervised Learning
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Chapter 9

Learning Kernels for Markov Chain
Monte Carlo

In the previous part, we discussed how supervised learning methods can be integrated into uncon-
ditional and conditional generative models, such as generative adversarial networks and variational
autoencoders. In this part, we discuss how supervised learning can be used to improve inference
methods, starting with Bayesian inference.

Markov Chain Monte Carlo (MCMC) methods are regarded as the “golden standard” of Bayesian
inference, but existing MCMC methods are either based on general-purpose and domain-agnostic
schemes that can lead to slow convergence, or based on problem-speci�c proposals hand-crafted by
an expert. As a result, MCMC methods are falling out of favor compared to approximate inference
methods (such as variational inference) despite being asymptotically exact.

In this chapter, we propose A-NICE-MC, a novel method that uses supervised learning to
automatically design e�cient Markov chain kernels tailored for a speci�c domain. First, we propose
an e�cient likelihood-free supervised learning (adversarial training) method to train a Markov
chain and mimic a given data distribution. Then, we leverage �exible volume preserving �ows to
obtain parametric kernels for MCMC. Using a bootstrap approach, we show how to train e�cient
Markov chains to sample from a prescribed posterior distribution by iteratively improving the
quality of both the model and the samples. Empirical results demonstrate that A-NICE-MC combines
the strong guarantees of MCMC with the expressiveness of deep neural networks, and is able to
signi�cantly outperform competing methods such as Hamiltonian Monte Carlo.

This chapter is previously published in [SZE17]. Shengjia Zhao and Daniel Levy contributed
to the contents of this chapter. My contributions include conceiving the idea, implementing the
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algorithms and executing the experiments.

9.1 Introduction

Variational inference (VI) and Monte Carlo (MC) methods are two key approaches to deal with
complex probability distributions in machine learning. The former approximates an intractable
distribution by solving a variational optimization problem to minimize a divergence measure with
respect to some tractable family. The latter approximates a complex distribution using a small
number of typical states, obtained by sampling ancestrally from a proposal distribution or iteratively
using a suitable Markov chain (Markov Chain Monte Carlo, or MCMC).

Recent progress in deep learning has vastly advanced the �eld of variational inference. Notable
examples include black-box variational inference and variational autoencoders [RGB14, KW13,
RMW14], which enabled variational methods to bene�t from the expressive power of deep neural
networks, and adversarial training [GPAM+14, ML16], which allowed the training of new families
of implicit generative models with e�cient ancestral sampling.

MCMC methods, on the other hand, have not bene�ted as much from these recent advancements.
Unlike variational approaches, MCMC methods are iterative in nature and do not naturally lend
themselves to the use of expressive function approximators [SKW15, DFHSJR01]. Even evaluating
an existing MCMC technique is often challenging, and natural performance metrics are intractable
to compute [GM15, GDVM16, GM17, EGSS14]. De�ning an objective to improve the performance
of MCMC that can be easily optimized in practice over a large parameter space is itself a di�cult
problem [MWHDF12, BDX04].

To address these limitations, we introduce A-NICE-MC, a new method for training �exible
MCMC kernels, e.g., parameterized using (deep) neural networks. Given a kernel, we view the
resulting Markov Chain as an implicit generative model, i.e., one where sampling is e�cient but
evaluating the (marginal) likelihood is intractable. We then propose supervised training as an
e�ective, likelihood-free method for training a Markov chain to match a target distribution.

First, we show it can be used in a learning setting to directly approximate an (empirical) data
distribution. We then use the approach to train a Markov Chain to sample e�ciently from a
model prescribed by an analytic expression (e.g., a Bayesian posterior distribution), the classic use
case for MCMC techniques. We leverage �exible volume preserving �ow models [DKB14] and a
“bootstrap” technique to automatically design powerful domain-speci�c proposals that combine the
guarantees of MCMC and the expressiveness of neural networks. Finally, we propose a method that
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decreases autocorrelation and increases the e�ective sample size of the chain as training proceeds.
We demonstrate that these trained operators are able to signi�cantly outperform traditional ones,
such as Hamiltonian Monte Carlo, in various domains.

9.2 Notations and Problem Setup

A sequence of continuous random variables {xt}∞t=0, xt ∈ Rn, is drawn through the following
Markov chain:

x0 ∼ π0 xt+1 ∼ Tθ(xt+1|xt)

where Tθ(·|x) is a time-homogeneous stochastic transition kernel parametrized by θ ∈ Θ and
π0 is some initial distribution for x0. In particular, we assume that Tθ is de�ned through an
implicit generative model fθ(·|x, v), where v ∼ p(v) is an auxiliary random variable, and fθ is a
deterministic transformation (e.g., a neural network). Let πtθ denote the distribution for xt. If the
Markov chain is both irreducible and positive recurrent, then it has an unique stationary distribution
πθ = lim

t→∞ π
t
θ . We assume that this is the case for all the parameters θ ∈ Θ.

Let pd(x) be a target distribution over x ∈ Rn, e.g, a data distribution or an (intractable)
posterior distribution in a Bayesian inference setting. Our objective is to �nd a Tθ such that it
achieves:

1. Low bias: The stationary distribution is close to the target distribution (minimize |πθ − pd|).

2. E�ciency: {πtθ}∞t=0 converges quickly (minimize t such that |πtθ − pd| < δ).

3. Low variance: Samples from one chain {xt}∞t=0 should be as uncorrelated as possible
(minimize autocorrelation of {xt}∞t=0).

We think of πθ as a stochastic generative model, which can be used to e�ciently produce
samples with certain characteristics (speci�ed by pd), allowing for e�cient Monte Carlo estimates.
We consider two settings for specifying the target distribution. The �rst is a learning setting where
we do not have an analytic expression for pd(x), but we have access to typical samples {si}mi=1 ∼ pd;
in the second case we have an analytic expression for pd(x), possibly up to a normalization constant,
but no access to samples. The two cases are discussed in Sections 9.3 and 9.4 respectively.
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9.3 Adversarial Training for Markov Chains

Consider the setting where we have direct access to samples from pd(x). Assume that the transition
kernel Tθ(xt+1|xt) is the following implicit generative model:

v ∼ p(v) xt+1 = fθ(xt, v) (9.1)

Assuming a stationary distribution πθ(x) exists, the value of πθ(x) is typically intractable to
compute. The marginal distribution πtθ(x) at time t is also intractable, since it involves integration
over all the possible paths (of length t) to x. However, we can directly obtain samples from πtθ,
which will be close to πθ if t is large enough (assuming ergodicity). This aligns well with the idea
of generative adversarial networks (GANs), a likelihood free method which only requires samples
from the model.

Generative Adversarial Network (GAN) [GPAM+14] is a framework for training deep gen-
erative models using a two player minimax game. A generator network G generates samples
by transforming a noise variable z ∼ p(z) into G(z). A discriminator network D(x) is trained
to distinguish between “fake” samples from the generator and “real” samples from a given data
distribution pd. Formally, this de�nes the following objective (Wasserstein GAN, from [ACB17])

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pd [D(x)]− Ez∼p(z)[D(G(z))] (9.2)

In our setting, we could assume pd(x) is the empirical distribution from the samples, and choose
z ∼ π0 and let Gθ(z) be the state of the Markov Chain after t steps, which is a good approximation
of πθ if t is large enough. However, optimization is di�cult because we do not know a reasonable
t in advance, and the gradient updates are expensive due to backpropagation through the entire
chain.

Therefore, we propose a more e�cient approximation, called Markov GAN (MGAN):

min
θ

max
D

Ex∼pd [D(x)]− λEx̄∼πbθ [D(x̄)]− (1− λ)Exd∼pd,x̄∼Tmθ (x̄|xd)[D(x̄)] (9.3)

where λ ∈ (0, 1), b ∈ N+,m ∈ N+ are hyperparameters, x̄ denotes “fake” samples from the
generator and Tmθ (x|xd) denotes the distribution of x when the transition kernel is applied m
times, starting from some “real” sample xd.

We use two types of samples from the generator for training, optimizing θ such that the samples
will fool the discriminator:
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Figure 9.1: Visualizing samples of π1 to π50 (each row) from a model trained on the MNIST dataset.
Consecutive samples can be related in label (red box), inclination (green box) or width (blue box).

1. Samples obtained after b transitions x̄ ∼ πbθ , starting from x0 ∼ π0.

2. Samples obtained after m transitions, starting from a data sample xd ∼ pd.

Intuitively, the �rst condition encourages the Markov Chain to converge towards pd over
relatively short runs (of length b). The second condition enforces that pd is a �xed point for the
transition operator.1 Instead of simulating the chain until convergence, which will be especially
time-consuming if the initial Markov chain takes many steps to mix, the generator would run
only (b + m)/2 steps on average. Empirically, we observe better training times by uniformly
sampling b from [1, B] and m from [1,M ] respectively in each iteration, so we use B and M as the
hyperparameters for our experiments.

9.3.1 Example: Generative Model for Images

We experiment with a distribution pd over images, such as digits (MNIST) and faces (CelebA). In the
experiments, we parametrize fθ to have an autoencoding structure, where the auxiliary variable
v ∼ N (0, I) is directly added to the latent code of the network serving as a source of randomness:

z = encoderθ(xt) z′ = ReLU(z + βv) xt+1 = decoderθ(z′) (9.4)

where β is a hyperparameter we set to 0.1. While sampling is inexpensive, evaluating probabilities
according to Tθ(·|xt) is generally intractable as it would require integration over v. The starting
distribution π0 is a factored Gaussian distribution with mean and standard deviation being the
mean and standard deviation of the training set. We include all the details, which ares based on the
DCGAN [RMC15] architecture, in Appendix B.7.4. All the models are trained with the gradient
penalty objective for Wasserstein GANs [GAA+17, ACB17], where λ = 1/3, B = 4 and M = 3.

We visualize the samples generated from our trained Markov chain in Figures 9.1 and 9.3, where
each row shows consecutive samples from the same chain. From Figure 9.1, it is clear that xt+1 is
related to xt in terms of high-level properties, such as digit identity (label). Our model learns to �nd

1We provide a more rigorous justi�cation in Appendix B.7.2.
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Figure 9.2: Tθ(yt+1|yt). Figure 9.3: Samples of π1 to π30 from models (top: without shortcut con-
nections; bottom: with shortcut) trained on the CelebA dataset.

and move between the modes of the dataset, instead of generating a single sample ancestrally. This
is drastically di�erent from other iterative generative models trained with maximum likelihood,
such as Generative Stochastic Networks (GSN, [BTLAY14]) and Infusion Training (IF, [BHV17]),
because when we train Tθ(xt+1|xt) we are not specifying a particular target for xt+1. In fact, to
maximize the discriminator score the model (generator) may choose to generate some xt+1 near a
di�erent mode.

To further investigate the frequency of various modes in the stationary distribution, we consider
the class-to-class transition probabilities for MNIST. We run one step of the transition operator
starting from real samples where we have class labels y ∈ {0, . . . , 9}, and classify the generated
samples with a CNN. We are thus able to quantify the transition matrix for labels in Figure 9.2.
Results show that class probabilities are fairly uniform and range between 0.09 and 0.11.

Although it seems that the MGAN objective encourages rapid transitions between di�erent
modes, it is not always the case. In particular, as shown in Figure 9.3, adding residual connections
[HZRS16] and highway connections [SGS15] to an existing model can signi�cantly increase the
time needed to transition between modes. This suggests that the time needed to transition between
modes can be a�ected by the architecture we choose for fθ(xt, v). If the architecture introduces an
information bottleneck which forces the model to “forget” xt, then xt+1 will have higher chance
to occur in another mode; on the other hand, if the model has shortcut connections, it tends to
generate xt+1 that are close to xt. The increase in autocorrelation will hinder performance if
samples are used for Monte Carlo estimates.
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9.4 Adversarial Training for Markov Chain Monte Carlo

We now consider the setting where the target distribution pd is speci�ed by an analytic expression:

pd(x) ∝ exp(−U(x)) (9.5)

where U(x) is a known energy function and the normalization constant in Equation (9.5) might be
intractable to compute. This form is very common in Bayesian statistics [Gre95], computational
physics [JM12] and graphics [LB14]. Compared to the setting in Section 9.3, there are two additional
challenges:

1. We want to train a Markov chain such that the stationary distribution πθ is exactly pd;

2. We do not have direct access to samples from pd during training.

9.4.1 Exact Sampling Through MCMC

We use ideas from the Markov Chain Monte Carlo (MCMC) literature to satisfy the �rst condition and
guarantee that {πtθ}∞t=0 will asymptotically converge to pd. Speci�cally, we require the transition
operator Tθ(·|x) to satisfy the detailed balance condition:

pd(x)Tθ(x
′|x) = pd(x

′)Tθ(x|x′) (9.6)

for all x and x′. This condition can be satis�ed using Metropolis-Hastings (MH), where a sample x′

is �rst obtained from a proposal distribution gθ(x′|x) and accepted with the following probability:

Aθ(x
′|x) = min

(
1,
pd(x

′)

pd(x)

gθ(x|x′)
gθ(x′|x)

)
= min

(
1, exp(U(x)− U(x′))

gθ(x|x′)
gθ(x′|x)

)
(9.7)

Therefore, the resulting MH transition kernel can be expressed as Tθ(x′|x) = gθ(x
′|x)Aθ(x

′|x) (if
x 6= x′), and it can be shown that pd is stationary for Tθ(·|x) [Has70].

The idea is then to optimize for a good proposal gθ(x′|x). We can set gθ directly as in Equation
(9.1) (if fθ takes a form where the probability gθ can be computed e�ciently), and attempt to optimize
the MGAN objective in Eq. (9.3) (assuming we have access to samples from pd, a challenge we will
address later). Unfortunately, Eq. (9.7) is not di�erentiable - the setting is similar to policy gradient
optimization in reinforcement learning. In principle, score function gradient estimators (such as
REINFORCE [Wil92]) could be used in this case; in our experiments, however, this approach leads
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to extremely low acceptance rates. This is because during initialization, the ratio gθ(x|x′)/gθ(x′|x)

can be extremely low, which leads to low acceptance rates and trajectories that are not informative
for training. While it might be possible to optimize directly using more sophisticated techniques
from the RL literature, we introduce an alternative approach based on volume preserving dynamics.

9.4.2 Hamiltonian Monte Carlo and Volume Preserving Flow

To gain some intuition to our method, we introduce Hamiltonian Monte Carlo (HMC) and volume
preserving �ow models [N+11]. HMC is a widely applicable MCMC method that introduces an
auxiliary “velocity” variable v to gθ(x′|x). The proposal �rst draws v from p(v) (typically a factored
Gaussian distribution) and then obtains (x′, v′) by simulating the dynamics (and inverting v at the
end of the simulation) corresponding to the Hamiltonian

H(x, v) = v>v/2 + U(x) (9.8)

where x and v are iteratively updated using the leapfrog integrator (see [N+11]). The transition
from (x, v) to (x′, v′) is deterministic, invertible and volume preserving, which means that

gθ(x
′, v′|x, v) = gθ(x, v|x′, v′) (9.9)

MH acceptance (9.7) is computed using the distribution p(x, v) = pd(x)p(v), where the acceptance
probability is p(x′, v′)/p(x, v) since gθ(x′, v′|x, v)/gθ(x, v|x′, v′) = 1. We can safely discard v′

after the transition since x and v are independent.
Let us return to the case where the proposal is parametrized by a neural network; if we could

satisfy Equation 9.9 then we could signi�cantly improve the acceptance rate compared to the
“REINFORCE” setting. Fortunately, we can design such an proposal by using a volume preserving
�ow model [DKB14].

A �ow model [DKB14, RM15, KSJ+16b, GDE17] de�nes a generative model for x ∈ Rn through
a bijection f : h→ x, where h ∈ Rn have the same number of dimensions as x with a �xed prior
pH(h) (typically a factored Gaussian). In this form, pX(x) is tractable because

pX(x) = pH(f−1(x))

∣∣∣∣det∂f
−1(x)

∂x

∣∣∣∣−1

(9.10)

and can be optimized by maximum likelihood.
In the case of a volume preserving �ow model f , the determinant of the Jacobian ∂f(h)

∂h is one.
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Such models can be constructed using additive coupling layers, which �rst partition the input into
two parts, y and z, and then de�ne a mapping from (y, z) to (y′, z′) as:

y′ = y z′ = z +m(y) (9.11)

where m(·) can be an expressive function, such as a neural network. By stacking multiple coupling
layers the model becomes highly expressive. Moreover, once we have the forward transformation f ,
the backward transformation f−1 can be easily derived. This family of models are called Non-linear

Independent Components Estimation (NICE) [DKB14].

9.4.3 A NICE Proposal

HMC has two crucial components. One is the introduction of the auxiliary variable v, which
prevents random walk behavior; the other is the symmetric proposal in Equation (9.9), which allows
the MH step to only consider p(x, v). In particular, if we simulate the Hamiltonian dynamics (the
deterministic part of the proposal) twice starting from any (x, v) (without MH or resampling v),
we will always return to (x, v).

Auxiliary variables can be easily integrated into neural network proposals. However, it is hard
to obtain symmetric behavior. If our proposal is deterministic, then fθ(fθ(x, v)) = (x, v) should
hold for all (x, v), a condition which is di�cult to achieve2. Therefore, we introduce a proposal
which satis�es Eq. (9.9) for any θ, while preventing random walk in practice by resampling v after
every MH step.

Our proposal considers a NICE model fθ(x, v) with its inverse f−1
θ , where v ∼ p(v) is the

auxiliary variable. We draw a sample x′ from the proposal gθ(x′, v′|x, v) using the following
procedure:

1. Randomly sample v ∼ p(v) and u ∼ Uniform[0, 1];

2. If u > 0.5, then (x′, v′) = fθ(x, v);

3. If u ≤ 0.5, then (x′, v′) = f−1
θ (x, v).

We call this proposal a NICE proposal and introduce the following theorem.

2The cycle consistency loss (as in CycleGAN [ZPIE17]) introduces a regularization term for this condition; we added
this to the REINFORCE objective but were not able to achieve satisfactory results.



CHAPTER 9. LEARNING KERNELS FOR MARKOV CHAIN MONTE CARLO 128

f

f−1

High “high” acceptance
“low” acceptanceU(x, v)

Low
U(x, v)

p(x, v)

Figure 9.4: Sampling process of A-NICE-MC. Each step, the proposal executes fθ or f−1
θ . Outside

the high probability regions fθ will guide x towards pd(x), while MH will tend to reject f−1
θ . Inside

high probability regions both operations will have a reasonable probability of being accepted.

Theorem 14. For any (x, v) and (x′, v′) in their domain, a NICE proposal gθ satis�es

gθ(x
′, v′|x, v) = gθ(x, v|x′, v′)

Proof. In Appendix A.7.

9.4.4 Training A NICE Proposal

Given any NICE proposal with fθ, the MH acceptance step guarantees that pd is a stationary
distribution, yet the ratio p(x′, v′)/p(x, v) can still lead to low acceptance rates unless θ is carefully
chosen. Intuitively, we would like to train our proposal gθ to produce samples that are likely under
the joint distribution p(x, v).

Although the proposal itself is non-di�erentiable w.r.t. x and v, we do not require score function
gradient estimators to train it. In fact, if fθ is a bijection between samples in high probability
regions, then f−1

θ is automatically also such a bijection. Therefore, we ignore f−1
θ during training

and only train fθ(x, v) to reach the target distribution p(x, v) = pd(x)p(v). For pd(x), we use the
MGAN objective in Equation (9.3); for p(v), we minimize the distance between the distribution
for the generated v′ (tractable through Equation (9.10)) and the prior distribution p(v) (which is a
factored Gaussian):

min
θ

max
D

L(x; θ,D) + γLd(p(v), pθ(v
′)) (9.12)

where L is the MGAN objective, Ld is an objective that measures the divergence between two
distributions and γ is a parameter to balance between the two factors; in our experiments, we use
KL divergence for Ld and γ = 1 3.

Our transition operator includes a trained NICE proposal followed by a Metropolis-Hastings
step, and we call the resulting Markov chain Adversarial NICE Monte Carlo (A-NICE-MC). The

3The results are not very sensitive to changes in γ; we also tried Maximum Mean Discrepancy (MMD, see [LSZ15]
for details) and achieved similar results.
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Figure 9.5: Left: Samples from a model with shortcut connections trained with ordinary discrimina-
tor. Right: Samples from the same model trained with a pairwise discriminator.

sampling process is illustrated in Figure 9.4. Intuitively, if (x, v) lies in a high probability region,
then both fθ and f−1

θ should propose a state in another high probability region. If (x, v) is in a
low-probability probability region, then fθ would move it closer to the target, while f−1

θ does the
opposite. However, the MH step will bias the process towards high probability regions, thereby
suppressing the random-walk behavior.

9.4.5 Bootstrap

The main remaining challenge is that we do not have direct access to samples from pd in order to
train fθ according to the adversarial objective in Equation (9.12), whereas in the case of Section 9.3,
we have a dataset to get samples from the data distribution.

In order to retrieve samples from pd and train our model, we use a bootstrap process [ET94]
where the quality of samples used for adversarial training should increase over time. We obtain
initial samples by running a (possibly) slow mixing operator Tθ0 with stationary distribution pd
starting from an arbitrary initial distribution π0. We use these samples to train our model fθi , and
then use it to obtain new samples from our trained transition operator Tθi ; by repeating the process
we can obtain samples of better quality which should in turn lead to a better model.

9.4.6 Reducing Autocorrelation by Pairwise Discriminator

An important metric for evaluating MCMC algorithms is the e�ective sample size (ESS), which
measures the number of “e�ective samples” we obtain from running the chain. As samples from
MCMC methods are not i.i.d., to have higher ESS we would like the samples to be as independent
as possible (low autocorrelation). In the case of training a NICE proposal, the objective in Equation
(9.3) may lead to high autocorrelation even though the acceptance rate is reasonably high. This is
because the coupling layer contains residual connections from the input to the output; as shown
in Section 9.3.1, such models tend to learn an identity mapping and empirically they have high
autocorrelation.

We propose to use a pairwise discriminator to reduce autocorrelation and improve ESS. Instead
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of scoring one sample at a time, the discriminator scores two samples (x1, x2) at a time. For “real
data” we draw two independent samples from our bootstrapped samples; for “fake data” we draw
x2 ∼ Tmθ (·|x1) such that x1 is either drawn from the data distribution or from samples after
running the chain for b steps, and x2 is the sample after running the chain for m steps, which is
similar to the samples drawn in the original MGAN objective.

The optimal solution would match both distributions of x1 and x2 to the target distribution.
Moreover, if x1 and x2 are correlated, then the discriminator should be able distinguish the “real”
and “fake” pairs, so the model is forced to generate samples with little autocorrelation. More details
are included in Appendix B.7.3. The pairwise discriminator is conceptually similar to the minibatch
discrimination layer [SGZ+16]; the di�erence is that we provide correlated samples as “fake” data,
while [SGZ+16] provides independent samples that might be similar.

To demonstrate the e�ectiveness of the pairwise discriminator, we show an example for the
image domain in Figure 9.5, where the same model with shortcut connections is trained with
and without pairwise discrimination (details in Appendix B.7.4); it is clear from the variety in the
samples that the pairwise discriminator signi�cantly reduces autocorrelation.

9.5 Experiments

Code for reproducing the experiments is available at https://github.com/ermongroup/a-nice-mc.
To demonstrate the e�ectiveness of A-NICE-MC, we �rst compare its performance with HMC

on several synthetic 2D energy functions: ring (a ring-shaped density), mog2 (a mixture of 2
Gaussians) mog6 (a mixture of 6 Gaussians), ring5 (a mixture of 5 distinct rings). The densities are
illustrated in Figure 9.6 (Appendix B.7.4 has the analytic expressions). ring has a single connected
component of high-probability regions and HMC performs well; mog2, mog6 and ring5 are selected
to demonstrate cases where HMC fails to move across modes using gradient information. A-NICE-
MC performs well in all the cases.

We use the same hyperparameters for all the experiments (see Appendix B.7.4 for details). In
particular, we consider fθ(x, v) with three coupling layers, which update v, x and v respectively.
This is to ensure that both x and v could a�ect the updates to x′ and v′.

How does A-NICE-MC perform? We evaluate and compare ESS and ESS per second (ESS/s) for
both methods in Table 9.1. For ring, mog2, mog6, we report the smallest ESS of all the dimensions
(as in [GC11]); for ring5, we report the ESS of the distance between the sample and the origin,

9_a_nice_mc:https://github.com/jiamings/a-nice-mc
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Figure 9.6: Densities of ring, mog2, mog6 and ring5 (from left to right).

Table 9.1: Performance of MCMC samplers as measured by E�ective Sample Size (ESS).
Higher is better (1000 maximum). Averaged over 5 runs under di�erent initializations. See Appendix
B.7.1 for the ESS formulation, and Appendix B.7.4 for how we benchmark the running time of both
methods.

ESS A-NICE-MC HMC

ring 1000.00 1000.00
mog2 355.39 1.00
mog6 320.03 1.00
ring5 155.57 0.43

ESS/s A-NICE-MC HMC

ring 128205 121212
mog2 50409 78
mog6 40768 39
ring5 19325 29

which indicates mixing across di�erent rings. In the four scenarios, HMC performed well only in
ring; in cases where modes are distant from each other, there is little gradient information for HMC
to move between modes. On the other hand, A-NICE-MC is able to freely move between the modes
since the NICE proposal is parametrized by a �exible neural network.

We use ring5 as an example to demonstrate the results. We assume π0(x) = N (0, σ2I) as the
initial distribution, and optimize σ through maximum likelihood. Then we run both methods, and
use the resulting particles to estimate pd. As shown in Figures 9.7a and 9.7b, HMC fails and there is
a large gap between true and estimated statistics. This also explains why the ESS is lower than 1
when we use HMC for ring5 in Table 9.1.
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Figure 9.7: Evaluation for A-NICE-MC. (a-b) Mean absolute error for estimating the statistics
in ring5 w.r.t. simulation length. Averaged over 100 chains. (c-d) Density plots for both methods.
When the initial distribution is a Gaussian centered at the origin, HMC overestimates the densities
of the rings towards the center.
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Figure 9.8: ESS with respect to the number of training iterations.

Another reasonable measurement to consider is Gelman’s R hat diagnostic [BG98], which
evaluates performance across multiple sampled chains. We evaluate this over the rings5 domain
(where the statistics is the distance to the origin), using 32 chains with 5000 samples and 1000
burn-in steps for each sample. HMC gives a R hat value of 1.26, whereas A-NICE-MC gives a R hat
value of 1.0024. This suggest that even with 32 chains, HMC does not succeed at estimating the
distribution reasonably well.

Does training increase ESS? We show in Figure 9.8 that in all cases ESS increases with more
training iterations and bootstrap rounds, which also indicates that using the pairwise discriminator
is e�ective at reducing autocorrelation.

Admittedly, training introduces an additional computational cost which HMC could utilize to
obtain more samples initially (not taking parameter tuning into account), yet the initial cost can be
amortized thanks to the improved ESS. For example, in the ring5 domain, we can reach an ESS of
121.54 in approximately 550 seconds (2500 iterations on 1 thread CPU, bootstrap included). If we
then sample from the trained A-NICE-MC, it will catch up with HMC in less than 2 seconds.

Next, we demonstrate the e�ectiveness of A-NICE-MC on Bayesian logistic regression, where
the posterior has a single mode in a higher dimensional space, making HMC a strong candidate
for the task. However, in order to achieve high ESS, HMC samplers typically use many leap frog
steps and require gradients at every step, which is ine�cient when ∇xU(x) is computationally
expensive. A-NICE-MC only requires running fθ or f−1

θ once to obtain a proposal, which is much
cheaper computationally. We consider three datasets - german (25 covariates, 1000 data points),
heart (14 covariates, 532 data points) and australian (15 covariates, 690 data points) - and evaluate
the lowest ESS across all covariates (following the settings in [GC11]), where we obtain 5000
samples after 1000 burn-in samples. For HMC we use 40 leap frog steps and tune the step size
for the best ESS possible. For A-NICE-MC we use the same hyperparameters for all experiments
(details in Appendix B.7.4). Although HMC outperforms A-NICE-MC in terms of ESS, the NICE
proposal is less expensive to compute than the HMC proposal by almost an order of magnitude,

4For R hat values, the perfect value is 1, and 1.1-1.2 would be regarded as too high.
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Table 9.2: ESS and ESS per second for Bayesian logistic regression tasks.

ESS A-NICE-MC HMC

german 926.49 2178.00
heart 1251.16 5000.00

australian 1015.75 1345.82

ESS/s A-NICE-MC HMC

german 1289.03 216.17
heart 3204.00 1005.03

australian 1857.37 289.11

which leads to higher ESS per second (see Table 9.2).

9.6 Discussion

We present a likelihood-free method to train a parametric MCMC operator with good mixing prop-
erties. The resulting Markov Chains can be used to target both empirical and analytic distributions.
We showed that using our novel training objective we can leverage �exible neural networks and
volume preserving �ow models to obtain domain-speci�c transition kernels. These kernels signi�-
cantly outperform traditional ones which are based on elegant yet very simple and general-purpose
analytic formulas. Our hope is that these ideas will allow us to bridge the gap between MCMC
and neural network function approximators, similarly to what “black-box techniques” did in the
context of variational inference [RGB14].

Combining the guarantees of MCMC and the expressiveness of neural networks unlocks the
potential to perform fast and accurate inference in high-dimensional domains, such as Bayesian
neural networks. This would likely require us to gather the initial samples through other methods,
such as variational inference, since the chances for untrained proposals to “stumble upon” low
energy regions is diminished by the curse of dimensionality. Therefore, it would be interesting
to see whether we could bypass the bootstrap process and directly train on U(x) by leveraging
the properties of �ow models. Another promising future direction is to investigate proposals that
can rapidly adapt to changes in the data. One use case is to infer the latent variable of a particular
data point, as in variational autoencoders. We believe it should be possible to utilize meta-learning
algorithms with data-dependent parametrized proposals.



Chapter 10

Learning Intentions for Multi-agent
Interactions

Reinforcement learning agents are prone to undesired behaviors due to reward mis-speci�cation.
Finding a set of reward functions to properly guide agent behaviors is particularly challenging in
multi-agent scenarios. Imitation learning and inverse reinforcement learning algorithms provide a
framework to automatically acquire suitable policies and reward functions from expert demonstra-
tions. Its extension to multi-agent settings, however, is di�cult due to the more complex notions of
rational behaviors. Hence, existing approaches are not applicable in multi-agent settings due to
the existence of multiple (Nash) equilibria and non-stationary environments. This problem can be
posed as inferring the underlying reward function of certain expert demonstrations.

In this chapter, we show how we can use supervised learning techniques to address this problem.
First, we propose MAGAIL new framework for multi-agent imitation learning for general Markov
games, where we build upon a generalized notion of inverse reinforcement learning. We further
introduce a practical multi-agent actor-critic algorithm with good empirical performance. Next, we
focus on settings with a large, variable number of agents and attempt to resolve these settings by
exploiting similarities between agent behaviors. In particular, we learn a shared reward function
using a variant of adversarial inverse reinforcement learning. This reward function is able to �t
a broad array of behavior by means of a latent variable learned using a variational autoencoder.
Finally, we illustrate the e�ectiveness of our method in multiple settings. Our methods can be
used to imitate complex behaviors in high-dimensional environments with multiple cooperative
or competing agents, recover reward functions that are highly correlated with ground truth ones.
Our methods can also work on two large real-world datasets and instances of tra�c congestion,

134
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including cars on highways and aircraft in terminal airspace, learning reward functions in crowded
environments at scale.

This chapter is based on [SRSE18, YSE19, GSKE20]. Lantao Yu and Nate Gruver contributed to
the materials in this chapter. Apart from writing the paper and regular discussions of the project,
my contributions include conceiving the idea, implementing the algorithms and executing the
experiments for [SRSE18], providing the idea and initial code base for [YSE19], and providing the
idea and dataset for [GSKE20].

10.1 Introduction

Reinforcement learning (RL) methods are becoming increasingly successful at optimizing reward
signals in complex, high dimensional environments [ESM+18]. A key limitation of RL, how-
ever, is the di�culty of designing suitable reward functions for complex and not well-speci�ed
tasks [HMMA+17, AOS+16]. If the reward function does not cover all important aspects of the task,
the agent could easily learn undesirable behaviors [AC16]. This problem is further exacerbated in
multi-agent scenarios, such as multiplayer games [PYW+17], multi-robot control [MJMO12] and
social interactions [LZL+17]; in these cases, agents do not even necessarily share the same reward
function, especially in competitive settings where the agents might have con�icting rewards. In
multi-agents systems, since di�erent agents may have completely di�erent goals and state-action
representations, hand-tuning reward functions becomes increasingly more challenging as we take
more agents into consideration.

Imitation learning methods address these problems via expert demonstrations [ZMBD08, ET15,
FLA16, SAS17]; the agent directly learns desirable behaviors by imitating an expert. Notably, inverse
reinforcement learning (IRL) frameworks assume that the expert is (approximately) optimizing
an underlying reward function, and attempt to recover a reward function that rationalizes the
demonstrations; an agent policy is subsequently learned through RL [NRO00, AN04]. Alternatively,
because the reward function is often considered as the most succinct, robust and transferable
representation of a task [AN04, FLL17], we can also consider the problem of inferring reward
functions from expert demonstrations, which we refer to as inverse reinforcement learning (IRL).

Unfortunately, this paradigm is not suitable for general multi-agent settings due to environment
being non-stationary to individual agents [LWT+17] and the existence of multiple equilibrium
solutions [HWO98]. The optimal policy of one agent could depend on the policies of other agents,
and vice versa, so there could exist multiple solutions in which each agents’ policy is the optimal
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response to others.
In this chapter, we propose a new framework for multi-agent imitation learning – provided

with demonstrations of a set of experts interacting with each other within the same environment,
we aim to learn multiple parametrized policies that imitate the behavior of each expert respectively.
Using the framework of Markov games, we integrate multi-agent RL with a suitable extension
of multi-agent inverse RL. The resulting procedure strictly generalizes Generative Adversarial
Imitation Learning (GAIL, [HE16]) in the single agent case. Imitation learning corresponds to a
two-player game between a generator and a discriminator. The generator controls the policies of
all the agents in a distributed way, and the discriminator contains a classi�er for each agent that is
trained to distinguish that agent’s behavior from that of the corresponding expert. Upon training,
the behaviors produced by the policies are indistinguishable from the training data through the
discriminator. We can incorporate prior knowledge into the discriminators, including the presence
of cooperative or competitive agents. In addition, we propose a novel multi-agent natural policy
gradient algorithm that addresses the issue of high variance gradient estimates commonly observed
in reinforcement learning [LWT+17, FAdFW16]. Empirical results demonstrate that our method
can imitate complex behaviors in high-dimensional environments, such as particle environments
and cooperative robotic control tasks, with multiple cooperative or competitive agents; the imitated
behaviors are close to the expert behaviors with respect to “true” reward functions which the agents
do not have access to during training.

Furthermore, we focus on settings with a large, variable number of agents and attempt to
resolve these settings by exploiting similarities between agent behaviors. In particular, we learn a
shared reward function using adversarial inverse reinforcement learning and a continuous latent
variable. We demonstrate our algorithm on two real-world settings: tra�c on highways and in
terminal airspace.

10.2 Preliminaries

10.2.1 Markov games

We consider an extension of Markov decision processes (MDPs) called Markov games [Lit94]. A
Markov game (MG) for N agents is de�ned via a set of states S , N sets of actions {Ai}Ni=1. The
function P : S × A1 × · · · × AN → P(S) describes the (stochastic) transition process between
states, where P(S) denotes the set of probability distributions over the set S . Given that we are
in state st at time t, the agents take actions (a1, . . . , aN ) and the state transitions to st+1 with
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probability P (st+1|st, a1, . . . , aN ).
Each agent i obtains a (bounded) reward given by a function ri : S × A1 × · · · × AN → R.

Each agent i aims to maximize its own total expected return Ri =
∑∞

t=0 γ
tri,t, where γ is the

discount factor, by selecting actions through a (stationary and Markovian) stochastic policy πi :

S ×Ai → [0, 1]. The initial states are determined by a distribution η : S → [0, 1].
The joint policy is de�ned as π(a|s) =

∏N
i=1 πi(ai|s), where we use bold variables without

subscript i to denote the concatenation of all variables for all agents (e.g. π denotes the joint policy∏N
i=1 πi in a multi-agent setting, v denotes all rewards, a denotes actions of all agents).

We use expectation with respect to a policy π to denote an expectation with respect to the
trajectories it generates. For example,

Eπ [r(s, a)] , Est,at∼π

[ ∞∑
t=0

γtr(st, at)

]

denotes the following sample process for the right hand side: s0 ∼ η, at ∼ π(at|st), st+1 ∼
P (st+1|at, st), yet if we do not take expectation over the state s, then

Eπ

[
r(s, a) +

∑
s′∈S

P (s′|s, a)v(s′)

]
, Ea∼π(·|s)

[
r(s, a) +

∑
s′∈S

P (s′|s, a)v(s′)

]

assumes the policy samples only the next-step action a.
We use subscript −i to denote all agents except for i. For example, (ai, a−i) represents

(a1, . . . , aN ), the actions of all N agents.

10.2.2 Reinforcement learning and Nash equilibrium

In reinforcement learning (RL), the goal of each agent is to maximize total expected return
Eπ[r(s, a)] given access to the reward signal r. In single agent RL, an optimal Markovian policy
exists but the optimal policy might not be unique (e.g., all policies are optimal for an identically
zero reward; see [SB98], Chapter 3.8). An entropy regularizer can be introduced to resolve this
ambiguity. The optimal policy is found via the following RL procedure:

RL(r) = arg max
π∈Π

H(π) + Eπ[r(s, a)], (10.1)

where H(π) is the γ-discounted causal entropy [BB14] of policy π ∈ Π.
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De�nition 2 (γ-discounted Causal Entropy). The γ-discounted causal entropy for a policy π is

de�ned as follows:

H(π) , Eπ[− log π(a|s)] = Est,at∼π

[
−
∞∑
t=0

γt log π(at|st)
]

If we scale the reward function by any positive value, the addition of H(π) resolves ambiguity
by selecting the policy among the set of optimal policies that have the highest causal entropy1 –
the policy with both the highest reward and the highest entropy is unique because the entropy
function is concave with respect to π and the set of optimal policies is convex.

In Markov games, however, the optimal policy of an agent depends on other agents’ policies.
One approach is to use an equilibrium solution concept, such as Nash equilibrium [HWO98].
Informally, a set of policies {πi}Ni=1 is a Nash equilibrium if no agent can achieve higher reward by
unilaterally changing its policy, i.e. ∀i ∈ [1, N ], ∀π̂i 6= πi,Eπi,π−i [ri] ≥ Eπ̂i,π−i [ri]. The process of
�nding a Nash equilibrium can be de�ned as a constrained optimization problem ([FV12], Theorem
3.7.2):

min
π∈Π,v∈RS×N

fr(π,v) =
N∑
i=1

(∑
s∈S

vi(s)− Eai∼πi(·|s)qi(s, ai)

)
(10.2)

vi(s) ≥ qi(s, ai) , Eπ−i

[
ri(s,a) + γ

∑
s′∈S

P (s′|s,a)vi(s
′)

]
∀i ∈ [N ], s ∈ S, ai ∈ Ai (10.3)

a , (ai, a−i) , (a1, . . . , aN ) v , [v1; . . . ; vN ]

where the joint action a includes actions a−i sampled from π−i and ai. Intuitively, v could represent
some estimated value function for each state and q represents the Q-function that corresponds to
v. The constraints enforce the Nash equilibrium condition – when the constraints are satis�ed,
(vi(s) − qi(s, ai)) is non-negative for every i ∈ [N ]. Hence fr(π,v) is always non-negative for
a feasible (π,v). Moreover, this objective has a global minimum of zero if a Nash equilibrium
exists, and π forms a Nash equilibrium if and only if fr(π,v) reaches zero while being a feasible
solution ([PB15], Theorem 2.4).

1For the remainder of the chapter, we may use the term “entropy” to denote the γ-discounted causal entropy for
policies.
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10.2.3 Inverse reinforcement learning

Suppose we do not have access to the reward signal r, but have demonstrations D provided by an
expert (N expert agents in Markov games). Imitation learning aims to learn policies that behave
similarly to these demonstrations. In Markov games, we assume all experts/players operate in the
same environment, and the demonstrations D = {(sj , aj)}Mj=1 are collected by sampling s0 ∼
η(s),at = πE(at|st), st+1 ∼ P (st+1|st,at); we assume knowledge ofN , γ, S ,A, as well as access
to T and η as black boxes. We further assume that once we obtain D, we cannot ask for additional
expert interactions with the environment (unlike in DAgger [RGB11] or CIRL [HMRAD16]).

Let us �rst consider imitation in Markov decision processes (as a special case to Markov games)
and the framework of single-agent Maximum Entropy IRL [ZMBD08, HE16] where the goal is to
recover a reward function r that rationalizes the expert behavior πE :

IRL(πE) = arg max
r∈RS×A

EπE [r(s, a)]−
(

max
π∈Π

H(π) + Eπ[r(s, a)]

)
In practice, expectations with respect to πE are evaluated using samples from D.

The IRL objective is ill-de�ned [NRO00, FLA16] and there are often multiple valid solutions
to the problem when we consider all r ∈ RS×A. For example, we can assign the reward function
for trajectories that are not visited by the expert arbitrarily so long as these trajectories yields
lower rewards than the expert trajectories. To resolve this ambiguity, [HE16] introduce a convex
reward function regularizer ψ : RS×A → R, which can be used to restrict rewards to be linear in a
pre-determined set of features [HE16]:

IRLψ(πE) = arg max
r∈RS×A

−ψ(r) + EπE [r(s, a)]−
(

max
π∈Π

H(π) + Eπ[r(s, a)]

)
(10.4)

10.2.4 Solution Concepts for Markov Games

A correlated equilibrium (CE) for a Markov game [ZBD11] is a joint strategy pro�le, where no
agent can achieve higher expected reward through unilaterally changing its own policy. CE �rst
introduced by [Aum74, Aum87] is a more general solution concept than the well-known Nash
equilibrium (NE) [HWO98], which further requires agents’ actions in each state to be independent,
i.e. π(a|s) = ΠN

i=1πi(ai|s). It has been shown that many decentralized, adaptive strategies will
converge to CE instead of a more restrictive equilibrium such as NE [GGM08, HMC00]. To take
bounded rationality into consideration, [MP95, MP98] further propose logistic quantal response
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equilibrium (LQRE) as a stochastic generalization to NE and CE.

De�nition 3. A logistic quantal response equilibrium for Markov game corresponds to any strategy

pro�le satisfying a set of constraints, where for each state and action, the constraint is given by:

πi(ai|s) =
exp (λExpRetπi (s, ai,a−i))∑
a′i

exp (λExpRetπi (s, a′i,a−i))

Intuitively, in LQRE, agents choose actions with higher expected return with higher probability.

10.2.5 Imitation by matching occupancy measures

[HE16] interpret the imitation learning problem as matching two occupancy measures, i.e., the
distribution over states and actions encountered when navigating the environment with a policy.
Formally, for a policy π, it is de�ned as ρπ(s, a) = π(a|s)∑∞t=0 γ

tP (st = s|π). [HE16] draw a
connection between IRL and occupancy measure matching, showing that the former is a dual of
the latter:

Proposition 4 (Proposition 3.1 in [HE16]).

RL ◦ IRLψ(πE) = arg min
π∈Π

−H(π) + ψ?(ρπ − ρπE )

Here ψ?(x) = supy x
>y − ψ(y) is the convex conjugate of ψ, which could be interpreted as a

measure of similarity between the occupancy measures of expert policy and agent’s policy. One
instance of ψ = ψGA gives rise to the Generative Adversarial Imitation Learning (GAIL) method:

ψ?GA(ρπ − ρπE ) = max
D∈(0,1)S×A

EπE [log(D(s, a))] + Eπ[log(1−D(s, a))] (10.5)

The resulting imitation learning method from Proposition 4 involves a discriminator (a classi�er
D) competing with a generator (a policy π). The discriminator attempts to distinguish real vs.
synthetic trajectories (produced by π) by optimizing (10.5). The generator, on the other hand, aims
to perform optimally under the reward function de�ned by the discriminator, thus “fooling” the
discriminator with synthetic trajectories that are di�cult to distinguish from the expert ones.

10.2.6 Adversarial Inverse Reinforcement Learning

Besides resolving the ambiguity that many optimal rewards can explain a set of demonstrations,
another advantage of MaxEnt IRL is that it can be interpreted as solving the following maximum
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likelihood estimation (MLE) problem:

pω(τ) ∝
[
η(s1)

T∏
t=1

P (st+1|st, at)
]

exp

(
T∑
t=1

rω(st, at)

)
(10.6)

max
ω

EπE [log pω(τ)] = Eτ∼πE

[
T∑
t=1

rω(st, at)

]
− logZω

Here, ω are the parameters of the reward function and Zω is the partition function, i.e. an
integral over all possible trajectories consistent with the environment dynamics. Zω is intractable
to compute when the state-action spaces are large or continuous, and the environment dynamics
are unknown.

Combining Guided Cost Learning (GCL) [FLA16] and generative adversarial training, [FCAL16,
FLL17] proposed adversarial IRL framework as an e�cient sampling based approximation to the
MaxEnt IRL, where the discriminator takes on a particular form:

Dω(s, a) =
exp(fω(s, a))

exp(fω(s, a)) + q(a|s)

where fω(s, a) is the learned function, q(a|s) is the probability of the adaptive sampler pre-
computed as an input to the discriminator, and the policy is trained to maximize logD− log(1−D).

To alleviate the reward shaping ambiguity [NHR99], where many reward functions can explain
an optimal policy, [FLL17] further restricted f to a reward estimator gω and a potential shaping
function hφ:

fω,φ(s, a, s′) = gω(s, a) + γhφ(s′)− hφ(s)

It has been shown that under suitable assumptions, gω and hφ will recover the true reward and
value function up to a constant.

10.3 Generalizing Imitation Learning to Markov games

Extending imitation learning to multi-agent settings is di�cult because there are multiple rewards
(one for each agent) and the notion of optimality is complicated by the need to consider an
equilibrium solution [HWO98]. We use MARL(r) to denote the set of (stationary and Markovian)
policies that form a Nash equilibrium under r and have the maximum γ-discounted causal entropy
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(among all equilibria):

MARL(v) = arg min
π∈Π,v∈RS×N

fr(π,v)−H(π) (10.7)

vi(s) ≥ qi(s, ai) ∀i ∈ [N ], s ∈ S, ai ∈ Ai

where q is de�ned as in Eq. 10.3. Our goal is to de�ne a suitable inverse operator MAIRL, in analogy
to IRL in Eq. 10.4. The key idea of Eq. 10.4 is to choose a reward that creates a margin between
the expert and every other policy. However, the constraints in the Nash equilibrium optimization
(Eq. 10.7) can make this challenging. To that end, we derive an equivalent Lagrangian formulation
of (10.7), where we “move” the constraints into the objective function, so that we can de�ne a
margin between the expected reward of two sets of policies that captures their “di�erence”.

10.3.1 Equivalent constraints via temporal di�erence learning

Intuitively, the Nash equilibrium constraints imply that any agent i cannot improve πi via 1-step
temporal di�erence learning; if the condition for Equation 10.3 is not satis�ed for some vi, qi, and
(s, ai), this would suggest that we can update the policy for agent i and its value function. Based on
this notion, we can derive equivalent versions of the constraints corresponding to t-step temporal
di�erence (TD) learning.

Theorem 15. For a certain policyπ and reward v, let v̂i(s;π, v) be the unique solution to the Bellman

equation:

v̂i(s;π, v) = Eπ

[
ri(s,a) + γ

∑
s′∈S

P (s′|s,a)v̂i(s
′;π, v)

]
∀s ∈ S

Denote q̂(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, v) as the discounted expected return for the i-th agent condi-

tioned on visiting the trajectory {s(j),a(j)}t−1
j=0, s

(t) in the �rst t− 1 steps and choosing action a(t)
i at

the t step, when other agents use policy π−i:

q̂
(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, v)

=
t−1∑
j=0

γjri(s
(j), a(j)) + γtEπ−i

[
ri(s

(t),a(t)) + γ
∑
s′∈S

P (s′|s,a(t))v̂i(s
′;π, v)

]
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Then π is Nash equilibrium if and only if

v̂i(s
(0);π, v) ≥ Eπ−i

[
q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, v)

]
, Q

(t)
i ({s(j), a

(j)
i }tj=0;π, v) (10.8)

∀t ∈ N+, i ∈ [N ], j ∈ [t], s(j) ∈ S, a(j) ∈ A

Intuitively, Theorem 15 states that if we replace the 1-step constraints with (t + 1)-step
constraints, we obtain the same solution as MARL(r), since (t + 1)-step TD updates (over one
agent at a time) is still stationary with respect to a Nash equilibrium solution. So the constraints
can be unrolled for t steps and rewritten as v̂i(s(0)) ≥ Q(t)

i ({s(j), a
(j)
i }tj=0;π, v) (corresponding to

Equation 10.8).

10.3.2 Multi-agent imitation learning

We are now ready to construct the Lagrangian dual of the primal in Equation 10.7, using the
equivalent formulation from Theorem 15. The �rst observation is that for any policyπ, f(π, v̂) = 0

when v̂ is de�ned as in Theorem 15 (see Lemma 10 in appendix). Therefore, we only need to consider
the “unrolled” constraints from Theorem 15, obtaining the following dual problem

max
λ≥0

min
π
L(t+1)

v (π, λ) ,
N∑
i=1

∑
τi∈T ti

λ(τi)
(
Q

(t)
i (τi;π, v)− v̂i(s(0);π, v)

)
(10.9)

where Ti(t) is the set of all length-t trajectories of the form {s(j), a
(j)
i }tj=0, with s(0) as initial state,

λ is a vector of N · |Ti(t)| Lagrange multipliers, and v̂ is de�ned as in Theorem 15. This dual
formulation is a sum over agents and trajectories, which uniquely corresponds to the constraints in
Equation 10.8.

In the following theorem, we show that for a speci�c choice of λ we can recover the di�erence
of the sum of expected rewards between two policies, a performance gap similar to the one used in
single agent IRL in Eq. (10.4). This amounts to “relaxing” the primal problem.

Theorem 16. For any two policies π? and π, let

λ?π(τi) = η(s(0))πi(a
(0)
i |s(0))

t∏
j=1

πi(a
(j)
i |s(j))

∑
a
(j−1)
−i

P (s(j)|s(j−1), a(j−1))π?−i(a
(j)
−i |s(j))
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be the probability of generating the sequence τi using policy πi and π?−i. Then

lim
t→∞

L(t+1)
r (π?, λ?π) =

N∑
i=1

Eπi,π?−i [ri(s, a)]−
N∑
i=1

Eπ?i ,π?−i [ri(s, a)] (10.10)

where L(t+1)
r (π?, λ?π) corresponds to the dual function where the multipliers are the probability of

generating their respective trajectories of length t.

We provide a proof in Appendix A.8.3. Intuitively, the λ?(τi) weights correspond to the
probability of generating trajectory τi when the policy is πi for agent i and π?−i for the other agents.
As t→∞, the �rst term of left hand side in Equation 10.10,

∑N
i=1

∑
τi∈T ti

λ(τi)Q
(t)
i (τi), converges

to the expected total reward Eπi,π?−i [ri], which is the �rst term of right hand side. The marginal
of λ? over the initial states is the initial state distribution, so the second term of left hand side,∑

s v̂(s)η(s), converges to Eπ?i ,π?−i [ri], which is the second term of right hand side. Thus, the left
hand side and right hand side of Equation 10.10 are the same as t→∞.

Theorem 16 motivates the following de�nition of multi-agent IRL with regularizer ψ.

MAIRLψ(πE) = arg max
v

−ψ(v) +
N∑
i=1

(EπE [ri])−
(

max
π

N∑
i=1

(βHi(πi) + Eπi,πE−i [ri])

)
,

(10.11)

where Hi(πi) = Eπi,πE−i [− log πi(ai|s)] is the discounted causal entropy for policy πi when
other agents follow πE−i , and β is a hyper-parameter controlling the strength of the entropy
regularization term as in [HE16]. This formulation is a strict generalization to the single agent IRL
in [HE16].

Corollary 6. If N = 1, β = 1 then MAIRLψ(πE) = IRLψ(πE).

Furthermore, if the regularization ψ is additively separable, and for each agent i, πEi is the
unique optimal response to other experts πE−i , we obtain the following:

Theorem 17. Assume that ψ(v) =
∑N

i=1 ψi(ri), ψi is convex for each i ∈ [N ], and that MARL(r)

has a unique solution2 for all r ∈ MAIRLψ(πE), then

MARL ◦MAIRLψ(πE) = arg min
π∈Π

N∑
i=1

−βHi(πi) + ψ?i (ρπi,E−i − ρπE )

2The set of Nash equilibria is not always convex, so we have to assume MARL(r) returns a unique solution.
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where πi,E−i denotes πi for agent i and πE−i for other agents.

The above theorem suggests that ψ-regularized multi-agent inverse reinforcement learning
is seeking, for each agent i, a policy whose occupancy measure is close to one where we replace
policy πi with expert πEi , as measured by the convex function ψ?i .

However, we do not assume access to the expert policy πE during training, so it is not possible to
obtain ρπi,E−i . In the settings of this chapter, we consider an alternative approach where we match
the occupancy measure between ρπE and ρπ instead. We can obtain our practical algorithm if we
select an adversarial reward function regularizer and remove the e�ect from entropy regularizers.

Proposition 5. If β = 0, and ψ(v) =
∑N

i=1 ψi(ri) where ψi(ri) = EπE [g(ri)] if ri > 0; +∞
otherwise, and

g(x) =

{
−x− log(1− ex) if ri > 0

+∞ otherwise

then

arg min
π

N∑
i=1

ψ?i (ρπi,πE−i − ρπE ) = arg min
π

N∑
i=1

ψ?i (ρπi,π−i − ρπE ) = πE

Theorem 17 and Proposition 5 discuss the di�erences from the single agent scenario. On the
one hand, in Theorem 17 we make the assumption that MARL(v) has a unique solution, which is
always true in the single agent case due to convexity of the space of the optimal policies. On the
other hand, in Proposition 5 we remove the entropy regularizer because here the causal entropy
for πi may depend on the policies of the other agents, so the entropy regularizer on two sides are
not the same quantity. Speci�cally, the entropy for the left hand side conditions on πE−i and the
entropy for the right hand side conditions on π−i (which would disappear in the single-agent case).

10.4 Practical multi-agent imitation learning

Despite the recent successes in deep RL, it is notoriously hard to train policies with RL algorithms-
because of high variance gradient estimates. This is further exacerbated in Markov games since an
agent’s optimal policy depends on other agents [LWT+17, FAdFW16]. In this section, we address
these problems and propose practical algorithms for multi-agent imitation.

10.4.1 Multi-agent generative adversarial imitation learning

We select ψi to be our reward function regularizer in Proposition 5; this corresponds to the two-
player game introduced in Generative Adversarial Imitation Learning (GAIL, [HE16]). For each
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agent i, we have a discriminator (denoted as Dωi ) mapping state action-pairs to scores optimized to
discriminate expert demonstrations from behaviors produced by πi. Implicitly, Dωi plays the role
of a reward function for the generator, which in turn attempts to train the agent to maximize its
reward thus fooling the discriminator. We optimize the following objective:

min
θ

max
ω

Eπθ

[
N∑
i=1

logDωi(s, ai)

]
+ EπE

[
N∑
i=1

log(1−Dωi(s, ai))

]
(10.12)

We update πθ through reinforcement learning, where we also use a baseline Vφ to reduce variance.
We outline the algorithm – Multi-Agent GAIL (MAGAIL) – in Appendix B.8.1.

We can augment the reward regularizer ψ(r) using an indicator y(r) denoting whether r �ts
our prior knowledge; the augmented reward regularizer ψ̂ : RS×A → R ∪ {∞} is then: ψ(r) if
y(r) = 1 and∞ if y(r) = 0. We introduce three types of y(r) for common settings.

Centralized The easiest case is to assume that the agents are fully cooperative, i.e. they share
the same reward function. Here y(r) = I(r1 = r2 = . . . rn) and ψ(r) = ψGA(r). One could argue
this corresponds to the GAIL case, where the RL procedure operates on multiple agents (a joint
policy).

Decentralized We make no prior assumptions over the correlation between the rewards. Here
y(r) = I(ri ∈ ROi×Ai) and ψi(ri) = ψGA(ri). This corresponds to one discriminator for each
agent which discriminates the trajectories as observed by agent i. However, these discriminators
are not learned independently as they interact indirectly via the environment.

Zero Sum Assume there are two agents that receive opposite rewards, so r1 = −r2. As such, ψ
is no longer additively separable. Nevertheless, an adversarial training procedure can be designed
using the following fact:

v(πE1 , π2) ≥ v(πE1 , πE2) ≥ v(π1, πE2)

where v(π1, π2) = Eπ1,π2 [r1(s, a)] is the expected outcome for agent 1. The discriminator could
maximize the reward for trajectories in (πE1 , π2) and minimize the reward for trajectories in
(π2, πE1).

These three settings are in summarized in Figure 10.1.
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Figure 10.1: Di�erent MAGAIL algorithms obtained with di�erent priors on the reward structure.
The discriminator tries to assign higher rewards to top row and low rewards to bottom row. In
centralized and decentralized, the policy operates with the environment to match the expert rewards.
In zero-sum, the policy do not interact with the environment; expert and policy trajectories are
paired together as input to the discriminator.

10.4.2 Multi-agent actor-critic with Kronecker factors

To optimize over the generator parameters θ in Eq. (10.12) we wish to use an algorithm for
multi-agent RL that has good sample e�ciency in practice. Our algorithm, which we refer to as
Multi-agent Actor-Critic with Kronecker-factors (MACK), is based on Actor-Critic with Kronecker-
factored Trust Region (ACKTR, [WMG+17]), a state-of-the-art natural policy gradient [Ama98,
Kak02] method in deep RL. MACK uses the framework of centralized training with decentralized
execution [FAdFW16]; policies are trained with additional information to reduce variance but such
information is not used during execution time. We let the advantage function of every agent agent
be a function of all agents’ observations and actions:

Aπiφi(s, at) =

k−1∑
j=0

(γjr(st+j , at+j) + γkV πi
φi

(st+k, a−i,t))− V πi
φi

(st, a−i,t) (10.13)

where V πi
φi

(sk, a−i) is the baseline for i, utilizing the additional information (a−i) for variance
reduction. We use (approximated) natural policy gradients to update both θ and φ but without
trust regions to schedule the learning rate – a linear decay learning rate schedule achieves similar
empirical performance.

MACK has some notable di�erences from Multi-Agent Deep Deterministic Policy Gradi-
ent [LWT+17]. On the one hand, MACK does not assume knowledge of other agent’s policies nor
tries to infer them; the value estimator merely collects experience from other agents (and treats
them as black boxes). On the other hand, MACK does not require gradient estimators such as
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Gumbel-softmax [JGP16] to optimize over discrete actions, which is necessary for DDPG [LHP+15].

10.5 Scaling up Multi-agent Inverse Reinforcement Learning

Accurate models of human behavior are increasingly important to safe and e�ective deployment of
autonomous systems. Despite this need, behavior modeling remains di�cult for various common
problem settings. Urban environments, for example, still pose signi�cant challenges for autonomous
planning because of the uncertainty resulting from a high density of people [SAMR18]. To describe
these scenarios robustly, a model must capture multi-modality in agent motivations and complex
interactions that often scale super-linearly with the number of agents.

10.5.1 Scalable Modeling with Latent Variables

To address the scalability issue, we propose to model the policy and reward functions with latent
variables. Speci�cally, we may assume the reward function for agent i can be modeled using a
latent variable zi, and is de�ned as rφ(ait, st|zi) with parameters φ respectively. We further assume
that the latent variable has the prior p(z) = N (µz, σz).

With the latent variables and conditional reward model, the objective becomes:

L(φ) = Eτ∼πE

[
N∑
i=1

log

(∫
zi
p(zi)

exp(
∑

t rφ(ait, st|zi))
Z(rφ, zi)

dzi
)]

(10.14)

To remove the summation over p(zi) in the log, we introduce a inference model qω(zi|τ i), where
τ i = {(sit, ait)} is the trajectory for agent i. This leads to an evidence lower bound to L(φ) [KW13]:

L(φ) ≥ Eτ∼πE

[
N∑
i=1

Ezi∼qω(zi|τ i)[ELBOφ,ω(τ i, zi)]

]
(10.15)

where ELBOφ,ω(τ i, zi) is de�ned as:

∑
t

rφ(ait, st|zi)− logZ(rφ, z
i)− log qω(zi|τ i) + log p(zi) (10.16)

Given zi, we can then optimize the �rst two terms in ELBOφ,ω(τ i, zi) with AIRL, which provides
both the reward function and the corresponding policy as discussed next.



CHAPTER 10. LEARNING INTENTIONS FOR MULTI-AGENT INTERACTIONS 149

10.5.2 Multi-agent AIRL with Latent Variables

We propose an Adversarial Inverse Reinforcement Learning (AIRL, [FLL17]) algorithm that maxi-
mizes the evidence lower bound objective in Equation 10.16. First, for the latent variable model qω ,
we introduce a inference network qω(z|τ) that predicts the latent variable from trajectories. From
Equation 10.16, this corresponds to the following objective:

Lqω = −Eτ∼πE ,z∼qω(z|τ)[log qω(z|τ)− log p(z)] (10.17)

Then, conditioned on the latent variable z, we can transform the �rst term of Equation 10.16
using an AIRL approach. Here we need an additional discriminator Dθ,φ(s, a, z) that depends on
state s, action a and the latent variable z, whose goal is to discriminate generated trajectories and
the demonstrations. Speci�cally, one provides a parameterized policy πθ(a|s), and the discriminator
is denoted as:

Dθ,φ(s, a, z) =
exp(rφ(s, a|z))

exp(rφ(s, a|z)) + πθ(a|s, z)
(10.18)

The discriminator then minimizes the following objective:

LD =− EτE∼πE ,zE∼qω(z|τE)[logDθ,φ(s, a, zE)] (10.19)

− Eτ∼πθ(z),z∼N (0,1)[log(1−Dθ,φ(s, a, z))] (10.20)

− Eτ̂E∼πθ(zE),zE∼qω(z|τE)[log(1−Dθ,φ(s, a, zE))] (10.21)

where the �rst term encourages higher Dθ,φ for demonstrations, and the second and third term
encourages lowerDθ,φ for trajectories generated by the policy when the latent variables are sampled
from p(z) or inferred from demonstrations.

The learned policy πθ(a|s, z) produces an action distribution based on the latent variable
and the current state, and its primary objective is to reach higher Dθ,φ values. We use πθ(z) for
the shorthand notation for the policy πθ(a|s, z) with latent variable z. To encourage the latent
variables to be informative for generating the trajectories, we add a reconstruction loss such that
trajectories in τE could be reconstructed via qω(z|τE) (encoder) and πθ(a|s, z) (decoder), similar
to InfoGAIL [LSE17a]. This leads to the objective:

LG = −Eτ∼πθ(z),z∼p(z)[Dθ,φ(s, a, z)] + Eτ̂E∼πθ(zE),zE∼qω(z|τE),τE∼πE [‖τ̂E − τE‖2] (10.22)
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These loss functions are iteratively minimized with stochastic gradient descent.

10.6 Experiments

We evaluate the performance of (centralized, decentralized, and zero-sum versions) of MAGAIL
under two types of environments. One is a particle environment which allows for complex interac-
tions and behaviors; the other is a control task, where multiple agents try to cooperate and move a
plank forward. We collect results by averaging over 5 random seeds. Our implementation is based
on OpenAI baselines [DHK+17]; please refer to Appendix B.8.2 for implementation details.

We compare our methods (centralized, decentralized, zero-sum MAGAIL) with two baselines.
The �rst is behavior cloning (BC), which learns a maximum likelihood estimate for ai given each
state s and does not require actions from other agents. The second baseline is the GAIL IRL baseline
that operates on each agent separately – for each agent we �rst pretrain the other agents with BC,
and then train the agent with GAIL; we then gather the trained GAIL policies from all the agents
and evaluate their performance.

10.6.1 Particle environments

We �rst consider the particle environment proposed in [LWT+17], which consists of several
agents and landmarks. We consider two cooperative environments and two competitive ones. All
environments have an underlying true reward function that allows us to evaluate the performance
of learned agents.

The environments include: Cooperative Communication – two agents must cooperate to
reach one of three colored landmarks. One agent (“speaker”) knows the goal but cannot move, so it
must convey the message to the other agent (“listener”) that moves but does not observe the goal.
Cooperative Navigation – three agents must cooperate through physical actions to reach three
landmarks; ideally, each agent should cover a single landmark. Keep-Away – two agents have
contradictory goals, where agent 1 tries to reach one of the two targeted landmarks, while agent
2 (the adversary) tries to keep agent 1 from reaching its target. The adversary does not observe
the target, so it must act based on agent 1’s actions. Predator-Prey – three slower cooperating
adversaries must chase the faster agent in a randomly generated environment with obstacles; the
adversaries are rewarded by touching the agent while the agent is penalized.

For the cooperative tasks, we use an analytic expression de�ning the expert policy; for the
competitive tasks, we use MACK to train expert policies based on the true underlying rewards
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Figure 10.2: Average true reward from cooperative tasks. Performance of experts and random
policies are normalized to one and zero respectively. We use inverse log scale for better comparison.

(using larger policy and value networks than the ones that we use for imitation). We then use the
expert policies to simulate trajectories D, and then do imitation learning on D as demonstrations,
where we assume the underlying rewards are unknown. Following [LSE17b], we pretrain our
Multi-Agent GAIL methods and the GAIL baseline using behavior cloning as initialization to reduce
sample complexity for exploration. We consider 100 to 400 episodes of expert demonstrations, each
with 50 timesteps, which is close to the amount of timesteps used for the control tasks in [HE16].
Moreover, we randomly sample the starting position of agent and landmarks each episode, so our
policies have to learn to generalize when they encounter new settings.

Cooperative tasks

We evaluate performance in cooperative tasks via the average expected reward obtained by all the
agents in an episode. In this environment, the starting state is randomly initialized, so generalization
is crucial. We do not consider the zero-sum case, since it violates the cooperative nature of the task.
We display the performance of centralized, decentralized, GAIL and BC in Figure 10.2.

Naturally, the performance of BC and MAGAIL increases with more expert demonstrations.
MAGAIL performs consistently better than BC in all the settings; interestingly, in the cooperative
communication task, centralized MAGAIL is able to achieve expert-level performance with only
200 demonstrations, but BC fails to come close even with 400 trajectories. Moreover, the central-
ized MAGAIL performs slightly better than decentralized MAGAIL due to the better prior, but
decentralized MAGAIL still learns a highly correlated reward between two agents.
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Table 10.1: Average agent rewards in competitive tasks. We compare behavior cloning (BC), GAIL
(G), Centralized (C), Decentralized (D), and Zero-Sum (ZS) methods. Best marked in bold (high vs.
low rewards is preferable depending on the agent vs. adversary role).

Task Predator-Prey
Agent Behavior Cloning G C D ZS

Adversary BC G C D ZS Behavior Cloning
Rewards -93.20 -93.71 -93.75 -95.22 -95.48 -90.55 -91.36 -85.00 -89.4

Task Keep-Away
Agent Behavior Cloning G C D ZS

Adversary BC G C D ZS Behavior Cloning
Rewards 24.22 24.04 23.28 23.56 23.19 26.22 26.61 28.73 27.80

Competitive tasks

We consider all three types of Multi-Agent GAIL (centralized, decentralized, zero-sum) and BC
in both competitive tasks. Since there are two opposing sides, it is hard to measure performance
directly. Therefore, we compare by letting (agents trained by) BC play against (adversaries trained
by) other methods, and vice versa. From Table 10.1, decentralized and zero-sum MAGAIL often
perform better than centralized MAGAIL and BC, which suggests that the selection of the suitable
prior ψ̂ is important for good empirical performance. More details for all the particle environments
are in the appendix.

10.6.2 Cooperative control with MA-GAIL

In some cases we are presented with sub-optimal expert demonstrations because the environment
has changed; we consider this case in a cooperative control task [KGE17], whereN bipedal walkers
cooperate to move a long plank forward; the agents have incentive to collaborate since the plank is
much longer than any of the agents. The expert demonstrates its policy on an environment with
no bumps on the ground and heavy weights, while we perform imitation in an new environment
with bumps and lighter weights (so one is likely to use too much force). Agents trained with BC
tend to act more aggressively and fail, whereas agents trained with centralized MAGAIL can adapt
to the new environment. With 10 (imperfect) expert demonstrations, BC agents have a chance of
failure of 39.8% (with a reward of 1.26), while centralized MAGAIL agents fail only 26.2% of the
time (with a reward of 26.57). We show videos of respective policies in the supplementary.
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10.6.3 Transportation Environments

In this section, we consider multi-agent imitation learning and inverse reinforcement learning in
transportation environments where scalability is crucial.

Deterministic Transition Model

In the transportation environments, we assume that the state st contains the location~l and velocities
~v of all agents:

st = {sit}

sit =

(~lt, ~vt)
i Oit = O[a]

sO else

where we consider ~l, ~v ∈ R2 for car trajectories (2d) and ~l, ~v ∈ R3 for airplane trajectories (3d).
We assume that the action for each agent is to change its location and velocity (denoted as ∆~l and
∆~v respectively). The extra null state sO and action aO are taken to be values far from the data
distribution such as the largest number possible in 64-bit �oating point. The transition model of
alive agents is de�ned as

T ′((~lt+1, ~vt+1)i | (~lt, ~vt)i, (∆~l, ∆~v)it) = (~lt + (∆~l)t, ~vt + (∆~v)t)
i

which is deterministic. Learning ∆~l as well as ∆~v (instead of using second order ODEs) is useful in
this case because it compensates for temporal downsampling of the data and discretization of time.

Data

HighD Dataset The HighD dataset [KBKE18] comprises over 100,000 short vehicle trajectories
gathered from drone footage of German highways. We used the locations with 3 lanes (majority of
dataset), and preprocessed by making all velocities positive and rescaling and shifting to a shared
coordinate system. As lane markings di�ered slightly due to drone camera angle, we took the true
location to be the average across all the recordings after scaling. To aid our optimization objective,
we also downsampled the trajectories without lane changes so that the resulting trajectories were
30% lane changes. This prevented the highly biased dataset from biasing the generative model in
the early phases of its training. Additionally, for convenience, we aggressively downsampled the
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trajectories in time, sacri�cing a smoother dynamics model for a smaller computational burden.
As vehicles are not point particles in the HighD dataset and have lateral dimensions, we found

training could be accelerated by including the relative locations of the edges making up each of the
two vehicle’s bounding boxes as inputs to the state encoder. Though not strictly necessary, this
proved to aid convergence.

FAA Dataset The aircraft trajectory dataset consists of tracks gathered from the Federal Aviation
Administration (FAA) multi-sensor fusion tracker [JSV08]. The dataset contains six months of
�ights from locations in Central Florida, New York City, and Southern California, though for this
work we only used �ights to and from JFK airport in New York City. Raw tracks contain the
lat long and altitude of each aircraft. These (x, y, z) points are smoothed using the optimization
procedure described in [BKB18] and approximate velocities are calculated by temporal di�erences.
All trajectories are bounded at 40 km (∼25 miles) from the airport laterally and 3 km (∼10000 ft)
in altitude. As with the HighD vehicle trajectories, we also temporally downsampled the aircraft
trajectories which in their raw form often had sequence lengths on the order of hundreds or
thousands. In order to provide as much contextual information to the model as possible, we also
joined trajectory data with hourly historical weather data from the NOAA, which included wind
speed, wind direction, and visibility, among other features.

Results

Learned Policies We used two types of metrics to evaluated the policies learned by our models.
To measure how e�ectively the learned distribution can cover the expert distribution, we calculate
the average and �nal displacement between sampled trajectories drawn from a particular starting
state sit0 and the ground truth trajectory, holding the policies of the other agents �xed as expert.
The reported number is the minimum over 10 sampled latent variables. Additionally, we measure
“emergent” properties of the learned policies in the setting of multi-agent control. These emergent
properties include the distribution of speeds, distance between agents, and rate of anomalous events
(such as driving o� the road or going to zero altitude far from the airport). For the HighD data
distance between agents is reported as distance headway (DHW)–the distance to the preceding
car in the lane if it exists–and time-to-collision (TTC) as these are the typical metrics used in
driving simulation. The benchmark our models, we compare them with the policy with the LSTM
removed as well as our full model with the latent variable z removed. Results for the HighD and
FAA datasets are shown in Tables 10.2 and 10.3. From these ablations, we see that the proposed
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Table 10.2: Results on the HighD dataset.

HighD
metric w/o lstm & latent w/o latent w/ latent expert

avg. displacement (m) 5.89 5.03 4.93
�nal displacement (m) 6.57 5.68 5.61

min speed (m/s) 22.4 21.6 23.7 21.2
max speed (m/s) 44.8 40.3 37.2 39.5
rate bad �nal state (%) 2.6 1.15 1.24 0.0
avg. DHW (m) 51.3 58.2 63.8 56.7
avg. TTC (s) 143 152 168 159

Table 10.3: Results on the FAA dataset.

FAA
metric w/o lstm & latent w/o latent w/ latent expert

avg. displacement (m) 823 670 596
�nal displacement (m) 897 808 785

min speed (m/s) 58.7 61.0 59.3 64.8
max speed (m/s) 310 296 302 287
rate bad �nal state (%) 7.52 6.01 5.32 0.0
avg. inter-agent dist. (m) 28000 26100 25200 24300

method is able to achieve low displacement from expert trajectory and emergent properties similar to

those of expert trajectories. The rate of bad �nal states is perhaps the most relevant among these
emergent properties and this is minimal with the full model on both datasets.

As the learned latent variables are a focus of this work, we show visualizations of rollouts
where latent variables are drawn from across the distribution. Figure 10.3 shows a distribution of
highway driving trajectories. This visualization illustrates the primary role of the latent variable
for the HighD dataset is modeling lane-changing behavior. Figure 10.4 shows a distribution of
takeo� trajectories out of JFK airport. Here we see the latent variable captures the shape of the
trajectory, which contains information about direction and altitude changes3.

Learned Reward Functions

Verifying learned reward function in an IRL setting is challenging in general. In our setting, the
3Video demonstrations of our learned policies in http://bit.ly/multi-agent-tra�c.

10_magail:http://bit.ly/multi-agent-traffic


CHAPTER 10. LEARNING INTENTIONS FOR MULTI-AGENT INTERACTIONS 156

Figure 10.3: Expert trajectories are shown in green while a rollout for one value of z is shown in
red. A full distribution of positions from trajectories resulting from many z ∼ N (0, 1) are shown
as a density. The latent variable primarily captures the driver’s willingness to change lanes, with
concentrations of density moving out to the adjacent lanes as well as behind the preceding car.
Agents further away from the rolled out agent are not shown for visual clarity.
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Figure 10.4: Expert trajectories are shown in green while a rollout for one value of z is shown in
red. A full distribution of positions from trajectories resulting from many z ∼ N (0, 1) are shown
as a density. Here the latent variable captures the path of ascent chosen by the pilot.
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Figure 10.5: Visualization of a learned reward function when the state of the vehicle is rolled
forward in time. Cars appear closer horizontally than they are in real life, as the true aspect ratio
of the road is much higher.

challenge remains because we do not have access to any ground truth rewards. Luckily, however,
visualization in this setting is feasible and human intuition can be used for qualitatively validating
the rewards. We visualize learned rewards by plotting the distribution of rewards around a vehicle.
Speci�cally, we calculate the rewards over a grid of possible locations surrounding the vehicle,
leaving the locations of the other vehicles �xed. Rewards are normalized between zero and one
and the resulting density is smoothed with a Gaussian kernel.

Figure 10.5 shows two visualizations of reward functions learned from the HighD dataset. Both
reward functions re�ect a lane-change objective–one in less congestion and another in a higher
level of congestion where rewards are more a�ected by the locations of other agents. Figure 10.6
shows a learned reward function on the FAA dataset. We see a similar reward function that re�ects
near-term navigational goals. In general, reward functions learned from the FAA dataset show less
dramatic dependence on other agents, as we would expect given the implicit e�ect of terminal air
tra�c control.

10.7 Related work and discussion

There is a vast literature on single-agent imitation learning [Bag15]. Behavior Cloning (BC)
learns the policy through supervised learning [Pom91]. Inverse Reinforcement Learning (IRL)
assumes the expert policy optimizes over some unknown reward, recovers the reward, and learns
the policy through reinforcement learning (RL). BC does not require knowledge of transition
probabilities or access to the environment, but su�ers from compounding errors and covariate
shift [RAB10, RGB11].
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Figure 10.6: Visualization of reward function learned from the FAA dataset. Rewards are clearly
correlated with the �ight path of the pilot, in this case a looping ascent to the NE.
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Most existing work in multi-agent imitation learning assumes the agents have very speci�c
reward structures. The most common case is fully cooperative agents, where the challenges
mainly lie in other factors, such as unknown role assignments [LYC17], scalability to swarm
systems [ŠKZK16] and agents with partial observations [BD14]. In non-cooperative settings,
[LBC14] consider the case of IRL for two-player zero-sum games and cast the IRL problem as
Bayesian inference, while [RGZH12] assume agents are non-cooperative but the reward function is
a linear combination of pre-speci�ed features.

The use of latent variables to learn multi-modal policies have been considered in single agent
imitation learning, such as learning multi-modal policies [LSE17a] or meta-learning [YYFE19]. Our
approach makes two distinctions from these previous ones: di�erent from [LSE17a], our latent
variables are continuous since there is no explicit prior about the number of di�erent policies;
di�erent from [YYFE19], we assume a prior distribution on the latent variable so as to generate
new policies unconditionally. These di�erences allow us to generate diverse multi-agent behaviors
within the same environment; using latent variables would also decrease sample complexity as
opposed to learning the policy of each agent separately.

Experimental results demonstrate that our methods are able to imitate complex behaviors
and learn suitable reward functions in high-dimensional environments with both cooperative
and adversarial interactions. An interesting research direction is to explore new techniques for
gathering expert demonstration; for example, when the expert is allowed to aid the agents by
participating in part of the agent’s learning process [HMRAD16].



Chapter 11

Conclusions

11.1 Summary of Contributions

The motivating theme of this dissertation was to develop arti�cial intelligence (AI) agents that
adapts to our various needs in complex, high-dimensional, non-stationary, real-world environments.
In particular, we focus on machine learning (ML)-based AI systems that leverages data, models and
computational systems. A key challenge in current ML systems is the need for supervision, which
does not apply well to cases where supervision signals are di�cult to capture – these cases include
compression, generation, and inference. To address the unique problems in these scenarios, we
developed theory and algorithms that applies supervised learning techniques and implemented
solutions to various application domains. In the following, we summarize the contribution within
each of these parts.

In Part I, we discuss the problem of compression (unsupervised representation learning) and
frame the problem within the context of variational mutual information estimation / maximization.
We start by analyzing variational mutual information objectives for representation learning, discuss
their limitations, and introduce a low-variance estimator of mutual information (Chapter 2). We
then follow up by introducing an estimator based on multi-label classi�cation that can also be
optimized e�ciently for representation learning (Chapter 3). Finally, we apply the above ideas and
consider information-theoretical approaches to learning fair representations, which uses regression
to estimate and optimize mutual information (Chapter 4). These approaches have been applied to
learning informative and fair representations from data.

In Part II, we discuss how supervised learning can be advanced for generation, i.e., learning
high-dimensional probabilistic models of data (generation). First, we start by improving generative
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adversarial networks (GANs) by reweighting the supervised learning objective. We proposed a
uni�ed objective for f -GANs and Wasserstein GANs, which allows us to interpret them as objective
functions that can be reweighted for better generative modeling performance. Next, we improve
GANs by introducing a novel negative data augmentation technique. This introduces negative
samples into the supervised learning procedure of training GANs, and is able to encourage GAN
discriminators to capture additional global information of the data. Negative data augmentation
can also be used the compression algorithms that we discussed in Part I. Finally, we discuss how
we can incorporate compression techniques from the previous part to enable few-shot conditional
generation capabilities of generative models. We introduced an e�cient sampling procedure for
di�usion generative models, applied it to the latent space of variational autoencoders, which allows
us to learn high-�delity generative models with informative latent spaces. Such a latent space can
be used for various few-shot conditional generation tasks, such as conditional image generation
and image manipulation.

In Part III we discuss how supervised learning can be used to improve probabilistic inference
methods. In Chapter 8, we discuss how supervised learning is used to automate design choices
in Bayesian inference that were previously hand-designed. We replace hand-designed heuristics
with automated supervised learning algorithms, allowing us to vastly improve the e�ciency of
Bayesian inference algorithms. In Chapter 9, we apply supervised learning to multi-agent imitation
learning and inverse reinforcement learning, where machines can imitate the behavior of real-world
multi-agent demonstrations while learning �exible reward functions from them. We demonstrated
our methods on a range of environments, such as cooperative robotic control, road tra�c, and air
tra�c.

11.2 Future Work

The contributions of this dissertation suggest new opportunities and challenges for future work,
some of which we highlight below.

Flexible, hierarchical representation learning In representation learning, the optimal level
of abstraction is task-dependent: information about color and texture is crucial if our goal is to
reproduce an image, but much less so if our goal is to merely recognize objects. Most existing
works on unsupervised representation learning only have a single level of abstraction that is
“biased” towards certain tasks, limiting the ability to adapt to novel ones. I believe that the next
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generation of intelligent systems learning from real-world data should form a �exible hierarchy
of abstractions that is suited to more general tasks and adapt them to novel tasks. Having more
�exibility in the representations also opens up the possibility to incorporate structured domain
knowledge, which we have explored in the context of structured prediction [RSS+18]. Learning
�exible representations can also lead to new computational tools that can facilitate application
areas where high quality supervision is scarce, such as generative modeling, scienti�c discovery,
and computational sustainability.

Generative modeling with conditions As intelligent systems grow increasingly complicated,
interpreting them becomes more challenging, so it is crucial for these systems to be able to
represent their knowledge in more interpretable ways, such as images, text, or graphs. These
generative models should also produce high-dimensional signals conditioned on our In recent
works, I explored new paradigms to training deep neural networks that accurately and e�ciently
model high-dimensional data from few-shot conditions (Chapter 8). Combining this with other
high-�delity generative models can allow humans to better understand the model and provide
more accurate feedback. This also includes pressing concerns in using generative models for fair
generative modeling, as we show in Chapter 5 and hopefully will extend to conditional few-shot
generation in future research.

Data-driven sequential decision making Much practical progress in machine learning over
the past few years have been driven by advances in large-scale datasets. However, in sequential
decision making problems with human interactions (e.g., autonomous driving and dialog systems),
accurate real-world data are often costly, and cheaper sources of data (e.g., simulators) are often
inaccurate. Bridging the gap between these two sources of data could bene�t real-world problems
that are di�cult to describe with human labels; this requires breakthroughs in many relevant
�elds such as causal inference, uncertainty quanti�cation, generative modeling, and domain adap-
tation. One example is our work on re-calibration techniques for model-based reinforcement
learning [MKS+19], which improves policy learning through models that better quantify uncer-
tainty. I believe that we can learn from precise yet expensive real-world data to better teach our
models under massive, cheap sources of data, and make progress in many real-world domains
where machines interact with humans.



Appendix A

Proofs

A.1 Proofs for Chapter 3

A.1.1 Proofs in Section 3.3

Theorem 1. ∀P,Q ∈ P(X ) such that P � Q we have

DKL(P‖Q) = sup
r∈∆(Q)

EP [log r] (3.6)

where the supremum is achived when r = dP/ dQ.

Proof. For every T ∈ L∞(Q), de�ne rT = eT

EQ[eT ]
, then rT ∈ ∆(Q) and from the Donsker-

Varadhan inequality [DV75]

DKL(P‖Q) = sup
T∈L∞(Q)

EP [T ]− logEQ[eT ] (A.1)

= sup
T∈L∞(Q)

EP
[
log

eT

EQ[eT ]

]
= sup

rT∈∆(Q)
EP [log rT ] (A.2)

Moreover, we have:

DKL(P‖Q) = EP [log dP − log dQ] = EP
[
log

dP

dQ

]
(A.3)

which completes the proof.
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Corollary 7. ∀P,Q ∈ P(X ) such that P � Q, ∀fθ : X → R≥0 we have

I(X;Y ) ≥ ICPC(fθ) := EPn(X,Y )

[
1

n

n∑
i=1

log
fθ(xi,yi)

1
n

∑n
j=1 fθ(xi,yj)

]
(A.4)

Proof.

nICPC(fθ) := EPn(X,Y )

[
n∑
i=1

log
fθ(xi,yi)

1
n

∑n
j=1 fθ(xi,yj)

]
(A.5)

= EPn(X,Y )

[
n∑
i=1

log
nfθ(xi,yi)∑n
j=1 fθ(xi,yj)

]
(A.6)

Since

EP (X)Pn(Y )

[
nfθ(x,y)∑n
j=1 fθ(x,yj)

]
= 1, (A.7)

we can apply Theorem 1 to obtain:

nICPC(fθ) = EPn(X,Y )

[
n∑
i=1

log
nfθ(xi,yi)∑n
j=1 fθ(xi,yj)

]
(A.8)

=
n∑
i=1

EP (Xi,Y n1 )

[
log

nfθ(xi,yi)∑n
j=1 fθ(xi,yj)

]
(A.9)

≤
n∑
i=1

I(Xi;Y
n

1 ) = nI(X;Y ) (A.10)

where Y n
1 denotes the concatenation of n independent random variables (Y1, . . . , Yn) and

P (Xi, Y
n

1 ) = P (Xi, Yi)P (Y i−1
1 )P (Y n

i+1)

is the joint distribution of P (Xi, Y
n

1 ).

A.1.2 Proofs in Section 3.4

Theorem 2. Assume that the ground truth density ratio r? = dP/ dQ and VarQ[r?] exist. Let Qn
denote the empirical distribution of n i.i.d. samples from Q and let EQn denote the sample average
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over Qn. Then under the randomness of the sampling procedure, we have:

VarQ[EQn [r?]] ≥ eDKL(P‖Q) − 1

n
(3.10)

lim
n→∞

nVarQ[logEQn [r?]] ≥ eDKL(P‖Q) − 1. (3.11)

Proof. Consider the variance of r?(x) when x ∼ Q:

VarQ[r?] = EQ

[(
dP

dQ

)2
]
−
(
EQ
[

dP

dQ

])2

(A.11)

= EP
[

dP

dQ

]
− 1 (A.12)

≥ eEP [log dP
dQ

] − 1 (A.13)

= eDKL(P‖Q) − 1 (A.14)

where (A.11) uses the de�nition of variance, (A.12) uses the de�nition of Radon-Nikodym derivative
to change measures, (A.13) uses Jensen’s inequality over log, and (A.14) uses the de�nition of KL
divergences.

The variance of the mean of n i.i.d. random variables then gives us:

VarQ[EQn [r]] =
Var[r]

n
≥ eDKL(P‖Q) − 1

n
(A.15)

which is the �rst part of the theorem.
As n→∞, VarQ[EQn [r]]→ 0, so we can apply the delta method:

VarQ[f(X)] ≈ (f ′(E(X)))2 VarQ[X] (A.16)

Applying f = log and E[X] = 1 gives us the second part of the theorem:

lim
n→∞

nVarQ[logEQn [r]] = lim
n→∞

nVar[EQn [r]] ≥ eDKL(P‖Q) − 1 (A.17)

which describes the variance in the asymptotic sense.

Corollary 1. Assume that the assumptions in Theorem 2 hold. Let Pm and Qn be the empirical
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distributions ofm i.i.d. samples from P and n i.i.d. samples from Q, respectively. De�ne

Im,nNWJ := EPm [log r? + 1]− EQn [r?] (3.12)

Im,nMINE := EPm [log r?]− logEQn [r?] (3.13)

where r? = dP/dQ. Then under the randomness of the sampling procedure, we have ∀m ∈ N:

VarP,Q[Im,nNWJ] ≥ (eDKL(P‖Q) − 1)/n (3.14)

lim
n→∞

nVarP,Q[Im,nMINE] ≥ eDKL(P‖Q) − 1. (3.15)

Proof. Since Pm and Qn are independent, we have

Var[Im,nNWJ] ≥ Var[EQn [r?]] (A.18)

= Var[EQn [r?]] ≥ eDKL(P‖Q) − 1

n
(A.19)

and

lim
n→∞

nVar[Im,nMINE] ≥ lim
n→∞

nVar[logEQn [r?]] ≥ eDKL(P‖Q) − 1 (A.20)

which completes the proof.

A.1.3 Proofs in Section 3.5

Theorem 3. Let r(x) : X → R≥0 be any non-negative measurable function such that
∫
rdQ = S,

S ∈ (0,∞) and r(x) ∈ [0, eK ]. De�ne rτ (x) = clip(r(x), eτ , e−τ ) for �nite, non-negative τ . If

τ < K , then the bias for using rτ to estimate the partition function of r satis�es:

|EQ[r]− EQ[rτ ]| ≤ max

(
e−τ |1− Se−τ |,

∣∣∣∣1− eKe−τ + S(eK − eτ )

eK − e−τ
∣∣∣∣) ;

if τ ≥ K , then

|EQ[r]− EQ[rτ ]| ≤ e−τ (1− Se−K).

Proof. We establish the upper bounds by �nding a worst case r to �nd the largest |EQ[r]−EQ[rτ ]|.
First, without loss of generality, we may assume that r(x) ∈ (−∞, e−τ ] ∪ [eτ ,∞) for all x ∈ X .



APPENDIX A. PROOFS 168

Otherwise, denote Xτ (r) = {x ∈ X : e−τ < r(x) < eτ} as the (measurable) set where the r(x)

values are between e−τ and eτ . Let

Vτ (r) =

∫
x∈Xτ (r)

r(x)dx ∈ (e−τ |Xτ (r)|, eτ |Xτ (r)|) (A.21)

be the integral of r over Xτ (r). We can transform r(x) for all x ∈ Xτ (r) to have values only in
{e−τ , eτ} and still integrate to Vτ (r), so the expectation under Q is not changed.

Then we show that we can rescale all the values above eτ and below eτ to the same value
without changing the expected value under Q. We denote

K1 = log

∫
I(r(x) ≤ e−τ )r(x)dQ(x)− log

∫
I(r(x) ≤ e−τ )dQ(x) (A.22)

K2 = log

∫
I(r(x) ≥ eτ )r(x)dQ(x)− log

∫
I(r(x) ≥ eτ )dQ(x) (A.23)

where eK1 and eK2 represents the mean of r(x) for all r(x) ≤ e−τ and r(x) ≥ eτ respectively.
We then have:

EQ[r] = eK1

∫
I(r(x) ≤ e−τ )dQ(x) + eK2

∫
I(r(x) ≥ eτ )dQ(x) (A.24)

1 =

∫
I(r(x) ≤ e−τ )dQ(x) +

∫
I(r(x) ≥ eτ )dQ(x) (A.25)

so we can parametrize EQ[r] via K1 and K2. Since EQ[r] = S by assumption, we have:

∫
I(r(x) ≤ e−τ )dQ(x) =

eK2 − S
eK2 − e−K1

(A.26)

and from the de�nition of rτ (x):

EQ[rτ ] =
eK2e−τ − Se−τ + Seτ − e−K1eτ

eK2 − e−K1
:= g(K1,K2) (A.27)

We can obtain an upper bound once we �nd max g(K1,K2) and min g(K1,K2). First, we have:

∂g(K1,K2)

∂K1
=
e−K1eτ (eK2 − e−K1)− e−K1(eK2e−τ − Se−τ + Seτ − e−K1eτ )

(eK2 − e−K1)2

=
e−K1(eτ − e−τ )(eK2 − S)

(eK2 − e−K1)2
≥ 0 (A.28)
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∂g(K1,K2)

∂K2
=
eK2e−τ (eK2 − e−K1)− eK2(eK2e−τ − Se−τ + Seτ − e−K1eτ )

(eK2 − e−K1)2

=
eK2(eτ − e−τ )(e−K1 − S)

(eK2 − e−K1)2
≤ 0 (A.29)

Therefore, g(K1,K2) is largest when K1 →∞,K2 = τ and smallest when K1 = τ,K2 →∞.

max g(K1,K2) = lim
K→∞

1− e−Keτ + S(eτ − e−τ )

eτ − e−K = S + e−τ − Se−2τ (A.30)

min g(K1,K2) = lim
K→∞

eKe−τ − 1 + S(eτ − e−τ )

eK − e−τ = e−τ (A.31)

Therefore,

|EQ[r]− EQ[rτ ]| ≤ max(|max g(K1,K2)− S|, |S −min g(K1,K2)|) (A.32)

= max
(
|e−τ − Se−2τ |, |S − e−τ |

)
(A.33)

The proof for Theorem 3 simply follows the above analysis for �xed K . When τ < K , we
consider the case when K1 →∞,K2 = τ and K1 = τ,K2 = K; when τ > K only the smaller
values will be clipped, so the increased value is no larger than the case where K1 →∞,K2 = K :

eK − S
eK

· eτ = e−τ (1− Se−K) (A.34)

where eK ≥ S from the fact that
∫
r dQ = S.

Theorem 4. The variance of the estimator EQn [rτ ] (using n samples from Q) satis�es:

Var[EQn [rτ ]] ≤ eτ − e−τ
4n

(3.18)

Proof. Since rτ (x) is bounded between eτ and e−τ , we have

Var[rτ ] ≤ eτ − e−τ
4

(A.35)

Taking the mean of n independent random variables gives us the result.

Combining Theorem 3 and 4 with the bias-variance trade-o� argument, we have the following:
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Corollary 8. Let r(x) : X → R≥0 be any non-negative measurable function such that
∫
rdQ = S,

S ∈ (0,∞) and r(x) ∈ [0, eK ]. De�ne rτ (x) = clip(r(x), eτ , e−τ ) for �nite, non-negative τ and

EQn as the sample average of n i.i.d. samples from Q. If τ < K , then

EQ[(r − EQn [rτ ])2] ≤ max

(
e−τ |1− Se−τ |,

∣∣∣∣1− eKe−τ + S(eK − eτ )

eK − e−τ
∣∣∣∣)2

+
eτ − e−τ

4n
;

If τ ≥ K , then:

EQ[(r − EQn [rτ ])2] ≤ e−2τ (1− Se−K)2 +
eτ − e−τ

4n
(A.36)

A.2 Proofs for Chapter 4

A.2.1 Preliminary Lemma and Propositions

To prove the main results, we need the following Lemma and Propositions 6 and 7. The Lemma is a
special case to the dual representation of f -divergences discussed in [NWJ08].

Lemma 9 (Nguyen et al. [NWJ08]). ∀P,Q ∈ P(X ) such that P � Q,

DKL(P‖Q) = sup
T∈L∞(Q)

EP [T ]− EQ[eT ] + 1 (A.37)

Proof. (Sketch) Please refer to [NWJ08] for a more formal proof.
Denote f(t) = t log t whose convex conjugate is f?(u) = exp(u− 1), we have that

DKL(P‖Q) = Ex∼Q
[
f

(
dP

dQ
(x)

)]
= Ex∼Q

[
sup
u
u · dP

dQ
(x)− f?(u)

]
(A.38)

= sup
T∈L∞(Q)

Ex∼Q
[
T (x) · dP

dQ
(x)− f?(T (x))

]
(A.39)

= sup
T∈L∞(Q)

Ex∼P [T (x)]− Ex∼Q [f?(T (x))] (A.40)

= sup
T∈L∞(Q)

Ex∼P [T (x) + 1]− Ex∼Q [exp(T (x))] , (A.41)

which completes the proof.

Proposition 6. For all positive integers n ≥ 1,m ≥ 2, and for any collection of positive random

variables {Xi}ni=1, {Xi,j}mj=1 such that ∀i ∈ [n], Xi, Xi,1, Xi,2, . . . , Xi,m−1 are exchangeable, then
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∀α ∈ (0, 2m
m+1 ], the following is true:

E

[
1

n

n∑
i=1

mXi

αXi + m−α
m−1

∑m−1
j=1 Xi,j

]
≤ 1

α
. (A.42)

Proof. First, for α ∈ (0, 2m/(m+ 1)] we have:

nE

[
1

n

n∑
i=1

mXi

αXi + m−α
m−1

∑m−1
j=1 Xi,j

]
(A.43)

= E

 n∑
i=1

mm−1
m−αXi

(Σi)−
(

1− m−1
m−αα

)
Xi

 (A.44)

= E

[
n∑
i=1

mm−1
m−α

Σi/Xi − (1− m−1
m−αα)

]
(A.45)

= m
m− 1

m− αE

 n∑
i=1

∞∑
p=0

(
Xi

Σi

)p+1(
1− m− 1

m− αα
)p (Taylor expansion) (A.46)

= m
m− 1

m− α
n∑
i=1

∞∑
p=0

E

[(
Xi

Σi

)p+1
](

1− m− 1

m− αα
)p

(A.47)

where we simplify the notation with Σi := Xi +
∑m−1

j=1 Xi,j . Furthermore, we note that the Taylor
series converges because (1− m−1

m−αα) ∈ (−1, 1).
Since the random variables are exchangeable, switching the ordering of Xi, Xi,1, . . . , Xi,m−1

does not a�ect the joint distribution, and the summing function is permutation invariant. Therefore,
for all i ∈ [n], p ≥ 0,

E

[(
Xi

Σi

)p+1
]

=
1

m
E

(Xi

Σi

)p+1

+
m−1∑
j=1

(
Xi,j

Σi

)p+1
 (A.48)

≤ 1

m
E

Xi

Σi
+

m−1∑
j=1

Xi,j

Σi

p+1 =
1

m
(A.49)

where the last inequality comes from the fact that
(
Xi +

∑m−1
j=1 Xi,j

)
/Σi = 1 and all the random
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variables are positive. Continuing from equation A.47, we have:

nE

[
1

n

n∑
i=1

mXi

αXi + m−α
m−1

∑m−1
j=1 Xi,j

]
(A.50)

≤ nmm− 1

m− α
∞∑
p=0

1

m

(
1− m− 1

m− αα
)p

=
m− 1

m− α
n

αm−1
m−α

=
n

α
(A.51)

Dividing both sides by n completes the proof for α ∈ (0, 2m
m+1 ].

Proposition 7. ∀n ≥ 1,m ≥ 2, and for any collection of positive random variables {Xi}ni=1,

{Xi,j}mj=1 such that ∀i ∈ [n], Xi, Xi,1, Xi,2, . . . , Xi,m−1 are exchangeable, then ∀α ∈ [1, m2 ],

E

[
1

n

n∑
i=1

mXi

αXi + m−α
m−1

∑m−1
j=1 Xi,j

]
≤ 1 (A.52)

Proof. The case for α ∈ [1, 2m
m+1 ] is apparent from Proposition 6.

For α ∈ (2m/(m+ 1),m/2], we have for all t ∈ [m− 1]:

E

[
1

n

n∑
i=1

mXi

αXi + m−α
m−1

∑m−1
j=1 Xi,j

]
(A.53)

≤ E

 1

n

1

m− 1

n∑
i=1

m−1∑
j=1

mXi

αXi +
∑j+t−1

k=j Xi,k

 (A.54)

= E

 1

n

1

m− 1

n∑
i=1

m−1∑
j=1

tXi

tα
mXi +

t− tα
m

t−1

∑j+t−1
k=j Xi,k

 (A.55)

where we de�neXi,k = Xi,k−(m−1) when k > (m−1) and use the concavity of the inverse function
(or equivalently the HM-AM inequality) to establish equation A.54. For anyα ∈ (2m/(m+1),m/2],
we can choose t to be any integer from the interval [mα ,

2m
α − 1]; we note that such an integer

always exists because the length of the interval is greater or equal to 1:

2m

α
− 1− m

α
=
m

α
− 1 ≥ 1

Then we can apply the result in Proposition 6, for t samples and the new α being tα
m ; from our
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construction of t, this satis�es the condition in Proposition 6 that:

1 ≤ tα

m
≤ 2t

t+ 1

Therefore we can apply Proposition 6 to a valid choice of t to obtain

E

[
1

n

n∑
i=1

mXi

αXi + m−α
m−1

∑m−1
j=1 Xi,j

]

≤ E

 1

n

1

m− 1

n∑
i=1

m−1∑
j=1

tXi

tα
mXi +

t− tα
m

t−1

∑j+t−1
k=j Xi,k

 ≤ m

tα
≤ 1

which proves the result.

A.2.2 Proof for CPC

Theorem 5. For all probability measures P,Q over sample space X such that P � Q, the following

holds for all functions r : X → R+ and integersm ≥ 2:

DKL(P‖Q) ≥ Ex∼P,y1:m−1∼Qm−1

[
log

m · r(x)

r(x) +
∑m−1

i=1 r(yi)

]
. (4.1)

Proof. From Lemma 9, we have that:

DKL(P‖Q) (A.56)

≥ Ey1:m−1∼Qm−1

[
Ex∼P

[
log

m · r(x)

r(x) +
∑m−1

i=1 r(yi)

]
− Ex∼Q

[
m · r(x)

r(x) +
∑m−1

i=1 r(yi)

]
+ 1

]

≥ Ey1:m−1∼Qm−1

[
Ex∼P

[
log

m · r(x)

r(x) +
∑m−1

i=1 r(yi)

]]
− 1 + 1 (A.57)

= Ex∼P,y1:m−1∼Qm−1

[
log

m · r(x)

r(x) +
∑m−1

i=1 r(yi)

]
, (A.58)

where the second inequality comes from Proposition 6 where x ∼ Q and y1:m−1 ∼ Qm−1 are
exchangeable, thus proving the statement.
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A.2.3 Proof for ML-CPC

Theorem 6. For all probability measures P,Q over sample space X such that P � Q, the following

holds for all functions r : X → R+, integers n ≥ 1,m ≥ 2, and real numbers α ∈ [ m
n(m−1)+1 , 1]:

DKL(P‖Q) ≥ Ex1:n∼Pn,yi,1:m−1∼Qm−1

[
1

n

n∑
i=1

log
mn · r(xi)

α
∑n

j=1 r(xj) + m−α
m−1

∑m−1
k=1 r(yj,k)

]
.

(4.5)

Proof. First, we have

E

[
1

n

n∑
i=1

log
nm · r(xi)

α
∑n

j=1 r(xj) + m−α
m−1

∑n
j=1

∑m−1
k=1 r(yj,k)

]
(A.59)

= E

[
1

n

n∑
i=1

log(nm · r(xi))− log

α n∑
j=1

r(xj) +
m− α
m− 1

n∑
j=1

m−1∑
k=1

r(yj,k)

]

≤ E

[
1

n

n∑
i=1

log(nm · r(xi))− log

nαr(xi) +
m− α
m− 1

n∑
j=1

m−1∑
k=1

r(yj,k)

] (A.60)

= E

[
1

n

n∑
i=1

nm · r(xi)
nαr(xi) + m−α

m−1

∑n
j=1

∑m−1
k=1 r(yj,k)

]
(A.61)

≤ DKL(P‖Q)− 1 + Ex1:n∼Qn

[
1

n

n∑
i=1

nm · r(xi)
nαr(xi) + m−α

m−1

∑n
j=1

∑m−1
k=1 r(yj,k)

]
(A.62)

where we use Jensen’s inequality over log in equation A.60 and Lemma 9 in equation A.62.
Since xi ∼ Q and all the yj,k are (n(m− 1) + 1) exchangeable random variables, and

m ≥ 2, α ∈
[

m

n(m− 1) + 1
, 1

]
⇒ n(m− 1) + 1

m
α ∈

[
1,
n(m− 1) + 1

2

]
,

we can apply Proposition 7 to the (n(m− 1) + 1) exchangeable variables

Ex1:n∼Qn

[
1

n

n∑
i=1

nm · r(xi)
nαr(xi) + m−α

m−1

∑n
j=1

∑m−1
k=1 r(yj,k)

]

= Ex1:n∼Qn

[
1

n

n∑
i=1

(n(m− 1) + 1) · r(xi)
n(m−1)+1

m αr(xi) +
m−n(m−1)+1

nm
α

m−1

∑n
j=1

∑m−1
k=1 r(yj,k)

]
≤ 1
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Combining the above with equation A.62, proves the result for the given range of α.

A.3 Proofs for Chapter 5

A.3.1 Proof of Lemma 6

Proof.

Iq(x; z|u) = Eqφ(x,z,u)[log qφ(x, z|u)− log q(x|u)− log qφ(z|u)]

= Eqφ(x,z,u)[log qφ(x, z|u)− log qφ(z|u)] + Eqφ(z,u)[− log q(x|u)]

= Eqφ(x,z,u)[log qφ(x|z,u)] +Hq(x|u)

= Eqφ(x,z,u)[log qφ(x|z,u) + log p(x|z,u)− log p(x|z,u)] +Hq(x|u)

= Eqφ(x,z,u)[log p(x|z,u)] +Hq(x|u) + Eqφ(z,u)DKL(qφ(x|z,u)‖p(x|z,u))

≥ Eqφ(x,z,u)[log p(x|z,u)] +Hq(x|u)

where the last inequality holds because KL divergence is non-negative.

A.3.2 Proof of Lemma 7

Proof.

Iq(z;u) ≤ Iq(z;x,u)

= Eqφ(x,z,u)[log qφ(z|x,u)− log qφ(z)]

= Eqφ(x,z,u)[log qφ(z|x,u)− log p(z)− log qφ(z) + log p(z)]

= Eq(x,u)DKL(qφ(z|x,u)‖p(z))−DKL(qφ(z)‖p(z))

A.3.3 Proof of Lemma 8

Proof.

Iq(z;u) = Eqφ(z,u)[log qφ(u|z)− log q(u)]

= Eqφ(z,u)[log qφ(u|z)− log p(u)− log q(u) + log p(u)]
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= Eqφ(z)DKL(qφ(u|z)‖p(u))−DKL(q(u)‖p(u))

≤ Eqφ(z)DKL(qφ(u|z)‖p(u))

Again, the last inequality holds because KL divergence is non-negative.

A.3.4 Proof of Theorem 7

Proof. Let us �rst verify that this problem is convex.

• Primal: −Eqφ(x,z,u)[log pθ(x|z,u)] is a�ne in qφ(z|x,u), convex in pθ(x|z,u) due to the
concavity of log, and independent of pθ(z).

• First condition: Eq(u)DKL(qφ(z|x,u)‖pθ(z)) is convex in qφ(z|x,u) and pθ(z) (because of
convexity of KL-divergence), and independent of pθ(x|z,u).

• Second condition: since Eqφ(z)DKL(qφ(u|z)‖p(u))−DKL(q(u)‖p(u)) = Iq(z;u) and

Iq(z;u) = DKL(qφ(z,u)‖q(u)qφ(z)) (A.63)

= DKL(
∑
x

qφ(z|x,u)q(x,u)‖q(u)
∑
x,u

qφ(z|x,u)q(x,u)) (A.64)

Let q = βq1 + (1− β)q2, ∀β ∈ [0, 1], q1, q2. We have

Iq(z;u) = DKL(
∑
x

q(z|x,u)q(x,u)‖q(u)
∑
x,u

q(z|x,u)q(x,u))

≥ βDKL(
∑
x

q1(z|x,u)q(x,u)‖q(u)
∑
x,u

q1(z|x,u)q(x,u))

+ (1− β)DKL(
∑
x

q2(z|x,u)q(x,u)‖q(u)
∑
x,u

q2(z|x,u)q(x,u))

= βIq1(z;u) + (1− β)Iq2(z;u)

where we use the convexity of KL divergence in the inequality. Since DKL(q(u)‖p(u))

is independent of qφ(z|x,u), both Iq(z;u) and Eqφ(z)DKL(qφ(u|z)‖p(u)) are convex in
qφ(z|x,u).

Then we show that the problem has a feasible solution by construction. In fact, we can simply let
qφ(z|x,u) = pθ(z) be some �xed distribution over z, and pθ(x|z,u) = qφ(x|z,u) for all x,u. In
this case, z and u are independent, so DKL(qφ(z|x,u)‖pθ(z)) = 0 < ε1, DKL(qφ(u|z)‖p(u)) =
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0 < ε2. This corresponds to the case where z is simply random noise that does not capture anything
in u.

Hence, Slater’s condition holds, which is a su�cient condition for strong duality.

A.4 Proofs for Chapter 6

Proposition 3. ∀P,Q ∈ P(X ) such that P � Q, ∀T ∈ L∞(Q) such that im(T ) ⊆ dom((f ′)−1),

and ∀R ⊆ L∞≥0(Q) such that {1} ⊆ R we have:

If (T ;P,Q) ≤ LRf (T ;P,Q) ≤ IW (T ;P,Q). (6.15)

Proof. From Propositions 1, and thatR ⊆ L∞≥0(Q), we have:

If (T ;P,Q) = inf
r∈L∞≥0(Q)

`f (T, r;P,Q) ≤ inf
r∈R

`f (T, r;P,Q) = LRf (T ;P,Q). (A.65)

From Proposition 2 and that {1} ⊆ R, we have:

LRf (T ;P,Q) = inf
r∈R

`f (T, r;P,Q) ≤ inf
r∈1

`f (T, r;P,Q) = LRf (T ;P,Q) ≤ IW (T ;P,Q). (A.66)

Combining the two inequalities completes the proof.

Theorem 8. For {1} ⊆ R ⊆ L∞≥0(Q), de�ne

Df,R(P‖Q) := sup
T∈F
LRf (T ;P,Q) (6.16)

where F := {T : X → dom((f ′)−1), T ∈ L∞(Q)}. Then

Df (P‖Q) ≤ Df,R(P‖Q) ≤ sup
T∈F

IW (T ;P,Q). (6.17)

Proof. From Proposition 1, we have the following upper bound for Df,R(P‖Q):

sup
T∈F

inf
r∈R

EP [f(r)] + EP [T ]− EQ[r · T ] (A.67)

≤ sup
T∈F

inf
r∈{1}

EP [f(r)] + EP [T ]− EQ[r · T ]

= sup
T∈F

EP [T ]− EQ[T ] = IPMF (P,Q),
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We also have the following lower bound for Df,R(P‖Q):

sup
T∈F

inf
r∈R

EP [f(r)] + EP [T ]− EQ[r · T ] (A.68)

≥ sup
T∈F

inf
r∈L∞≥0(Q)

EP [f(r)] + EP [T ]− EQ[r · T ]

= sup
T∈F

EP [T ]− EQ[f∗(T )] = Df (P‖Q).

Therefore, Df,R(P‖Q) is bounded between Df (P‖Q) and IPMF (P,Q) and thus it is a valid
divergence over P(X ).

Theorem 9. Let f(u) = u log u and F a set of real-valued bounded measurable functions on X . For
any �xed choice of P,Q, and T ∈ F , we have

arg min
r∈∆(Q)

EQ[f(r)] + EP [T ]− EQ[r · T ] =
eT

EQ[eT ]
(6.19)

Proof. Consider the following Lagrangian:

h(r, λ) := EQ[f(r)]− EQ[r · T ] + λ(EQ[r]− 1) (A.69)

where λ ∈ R and we formalize the constraint r ∈ ∆(r) with EQ[r]− 1 = 0. Taking the functional
derivative ∂h/∂r and setting it to zero, we have:

f ′(r) dQ− T dQ+ λ (A.70)

= (log r + 1) dQ− T dQ+ λ = 0,

so r = exp(T − (λ+ 1)). We can then apply the constraint EQ[r] = 1, where we solve λ+ 1 =

EQ[eT ], and consequently the optimal r = eT /EQ[eT ] ∈ ∆(Q).

A.5 Proofs for Chapter 7

A.5.1 NDA for GANs

Theorem 10. Let P ∈ P(X ) be any distribution over X with disjoint support than pdata, i.e.,

such that supp(pdata) ∩ supp(P ) = ∅. Let Dφ : X → R be the set of all discriminators over X ,
f : R≥0 → R be a convex, semi-continuous function such that f(1) = 0, f? be the convex conjugate
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of f , f ′ its derivative, and Gθ be a distribution with sample space X . Then ∀λ ∈ (0, 1], we have:

arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (Gθ, Dφ) = arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = pdata (7.4)

where Lf (Q,Dφ) = Ex∼pdata [Dφ(x)] − Ex∼Q[f?(Dφ(x))] is the objective for f -GAN [NCT16].

However, the optimal discriminators are di�erent for the two objectives:

arg max
Dφ:X→R

Lf (Gθ, Dφ) = f ′(pdata/Gθ) (7.5)

arg max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = f ′(pdata/(λGθ + (1− λ)P )) (7.6)

Proof. Let us use p(x), p(x), q(x) to denote the density functions of pdata, P and Gθ respectively
(and P , P , Q for the respective distributions). First, from Lemma 1 in [NWJ08], we have that

max
Dφ:X→R

Lf (Gθ, Dφ) = Df (P‖Gθ) (A.71)

max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = Df (P‖λQ+ (1− λ)P ) (A.72)

where Df refers to the f -divergence. Then, we have

Df (P ||λQ+ (1− λ)P )

=

∫
X

(λq(x) + (1− λ)p(x)) f

(
p(x)

λq(x) + (1− λ)p(x)

)
=

∫
X
λq(x)f

(
p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

≥λf
(∫
X
q(x)

p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0) (A.73)

=λf

(
1

λ

∫
X
λq(x)

p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=λf

(
1

λ

∫
X

(λq(x) + (1− λ)p(x)− (1− λ)p(x))
p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=λf

(
1

λ
−
∫
X

((1− λ)p(x))
p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=λf

(
1

λ

)
+ (1− λ)f(0) (A.74)

where we use the fact that f is convex with Jensen’s inequality in Eq.(A.73) and the fact that
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p(x)p(x) = 0,∀x ∈ X in Eq.(A.74) since P and P has disjoint support.
We also have

Df (P ||λP + (1− λ)P ) =

∫
X

(λp(x) + (1− λ)p(x)) f

(
p(x)

λp(x) + (1− λ)p(x)

)
=

∫
X

(λp(x)) f

(
p(x)

λp(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=

∫
X

(λp(x)) f

(
p(x)

λp(x) + 0

)
+ (1− λ)f(0)

= λf

(
1

λ

)
+ (1− λ)f(0)

Therefore, in order for the inequality in Equation A.73 to be an equality, we must have that
q(x) = p(x) for all x ∈ X . Therefore, the generator distribution recovers the data distribution
at the equlibrium posed by the NDA-GAN objective, which is also the case for the original GAN
objective.

Moreover, from Lemma 1 in [NWJ08], we have that:

arg max
Dφ

Lf (Q,Dφ) = f ′(pdata/Q) (A.75)

Therefore, by replacing Q with Gθ and (λGθ + (1− λ)P ), we have:

arg max
Dφ:X→R

Lf (Gθ, Dφ) = f ′(pdata/Gθ) (A.76)

arg max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = f ′(pdata/(λGθ + (1− λ)P )) (A.77)

which shows that the optimal discriminators are indeed di�erent for the two objectives.

A.5.2 NDA for Contrastive Representation Learning

We describe the detailed statement of Theorem 2 and proof as follows.

Theorem 18. For some distribution p over X such that supp(p) ∩ supp(pdata) = ∅, and for any

maximizer of the NDA-CPC objective

ĥ ∈ arg max
hθ

max
gφ

ICPC(hθ, gφ)
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the representations of negative samples are disjoint from that of positive samples for ĥ; i.e., ∀x ∈
supp(pdata), x̄ ∈ supp(p),

supp(ĥ(x̄)) ∩ supp(ĥ(x)) = ∅

Proof. We use a contradiction argument to establish the proof. For any representation mapping
that maximizes the NDA-CPC objective,

ĥ ∈ arg max
hθ

max
gφ

ICPC(hθ, gφ)

suppose that the positive and NDA samples share some support, i.e., ∃x ∈ supp(pdata), x̄ ∈
supp(p),

supp(ĥ(x̄)) ∩ supp(ĥ(x)) 6= ∅

We can always construct ĥ′ that shares the same representation with ĥ for pdata but have dis-
joint representations for NDA samples; i.e., ∀x ∈ supp(pdata), x̄ ∈ supp(p), the following two
statements are true:

1. ĥ(x) = ĥ′(x);

2. supp(ĥ′(x̄)) ∩ supp(ĥ′(x)) = ∅.

Our goal is to prove that:

max
gφ

ICPC(ĥ′, gφ) > max
gφ

ICPC(ĥ, gφ) (A.78)

which shows a contradiction.
For ease of exposition, let us allow zero values for the output of g, and de�ne 0/0 = 0 (in this

case, if g assigns zero to positive values, then the CPC objective becomes −∞, so it cannot be a
maximizer to the objective).

Let ĝ ∈ arg max ICPC(ĥ, gφ) be an optimal critic to the representation model ĥθ . We then
de�ne a following critic function:

ĝ′(x, z) =

ĝ(x, z) if ∃x ∈ supp(pdata) s.t. z ∈ supp(ĥ′(x))

0 otherwise
(A.79)

In other words, the critic assigns the same value for data-representation pairs over the support
of pdata and zero otherwise. From the assumption over ĥ, ∃x ∈ supp(pdata), x̄ ∈ supp(p), and



APPENDIX A. PROOFS 182

z ∈ supp(ĥ(x̄)),
z ∈ supp(ĥ(x))

so (x, z) can be sampled as a positive pair and ĝ(x, z) > 0.
Therefore,

max
gφ

ICPC(ĥ′, gφ) ≥ ICPC(ĥ′, ĝ′) (A.80)

= E

[
log

(n+m)ĝ′(x, z)

ĝ′(x, z) +
∑n−1

j=1 ĝ
′(x, ẑj) +

∑m
k=1 ĝ

′(x, zk)︸ ︷︷ ︸
=0

]
(plug in de�nition for NDA-CPC)

≥ E

[
log

(n+m)ĝ(x, z)

ĝ(x, z) +
∑n−1

j=1 ĝ(x, ẑj) +
∑m

k=1 ĝ(x, zk)

]
(existence of someĝ(x, z) > 0 )

= max
gφ

ICPC(ĥ, gφ) (Assumption that ĝ is optimal critic)

which proves the theorem via contradiction.

A.6 Proofs for Chapter 8

A.6.1 Relationship to maximum likelihood

Theorem 12. (informal) For any valid {αi}Ti=0, there exists some weights ŵ : {αi}Ti=1 → R+ for

the di�usion objective such that −LD2 is a variational lower bound to the log-likelihood, i.e.,

−LD2(θ, φ; ŵ) ≤ Epdata [log pθ(x)], (8.12)

where pθ(x) := Ex0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.

Theorem 19. (formal) Suppose that x ∈ Rd. For any valid {αi}Ti=0, let ŵ satisfy:

∀t ∈ [2, . . . , T ], ŵ(αt) =
(1− αt)αt−1

2(1− αt−1)2αt
(A.81)

ŵ(α1) =
1− α1

2(2π)dα1
(A.82)

then:

−LD2(θ, φ; ŵ) +H(qφ(z(1)|x)) ≤ Epdata [log pθ(x)] (A.83)
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where pθ(x) := Ex0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.

Proof. First, we have that:

Epdata(x)[log pθ(x)] = Epdata(x)

log
∑
z(1)

pθ(x|z(1))pθ(z
(1))

 (A.84)

≥ Epdata(x),qφ(z(1))[log pθ(x|z(1)) + log pθ(z
(1))− log qφ(z(1)|x)] (A.85)

= Epdata(x),qφ(z(1)|x)[log pθ(x|z(1))−DKL(qφ(z(1)|x)‖pθ(z(1)))]. (A.86)

where we use Jensen’s inequality here. Compared with the objective for D2:

−LD2(θ, φ;w) := Ex∼pdata,z(1)∼qφ(z(1)|x)[log p(x|z(1))− `di�(z(1);w, θ)], (A.87)

and it is clear the proof is complete if we show that:

H(qφ(z(1)|x))− Ez(1)∼qφ(z(1)|x)[`di�(z(1); ŵ, θ)] (A.88)

≤−DKL(qφ(z(1)|x)‖pθ(z(1))) (A.89)

=H(qφ(z(1)|x)) + Ez(1)∼qφ(z(1)|x)[log pθ(z
(1))] (A.90)

or equivalently:

Ez(1)∼qφ(z(1)|x)[`di�(z(1); ŵ, θ)] ≤ Ez(1)∼qφ(z(1)|x)[log pθ(z
(1))] (A.91)

Let us apply variational inference with an inference model q(z(α1:T )|z(1)) where α0 = 1 and
αT = 0:

Ez(1)∼qφ(z(1)|x)[log pθ(z
(1))] = Ez(1)∼qφ(z(1)|x)[log

∑
z

(
pθ(z

(αT ))
T∏
t=1

pθ(z
(αt−1)|z(αt))

)
]

≥ Ez(α0:T ) [log pθ(z
(αT )) +

T∑
t=1

log pθ(z
(αt−1)|z(αt))− log q(z(α1:T )|z(α0))] (A.92)

≥ Ez(α0:T )

[
log pθ(z

(αT ))− log q(z(αT )|z(α0)) (A.93)

−
T∑
t=2

DKL(q(z(αt−1)|z(αt), z(α0))‖pθ(z(αt−1)|z(αt)))︸ ︷︷ ︸
Lt−1

+ log pθ(z
(α0)|z(α1))

]
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where we remove the superscript of pθ to indicate that there are no intermediate discretization
steps between αt−1 and αt. Now, for t ≥ 2, let us consider pθ and qφ with the form in Equations 8.4
and 8.5 respectively, which are both Gaussian distributions (restrictions to pθ will still give lower
bounds). Then we can model the standard deviation of pθ(x(αt−1)|x(αt)) to be equal to that of
q(x(αt−1)|x(αt),x(α0))). Under this formulation, the KL divergence for Lt−1 is just one between
two Gaussians with the same standard deviations and is a weighted Euclidean distance between
the means. Using the derivation from Equation 8.6 to Equation 8.8, we have that:

Lt−1 = Ez0,ε

[
(1− αt)αt−1

2(1− αt−1)2αt
‖ε− εθ(z(αt);αt, αt−1)‖22

]
(A.94)

which gives us the weights for ŵ for α2:T . For pθ(z(α0)|z(α1)) let us model it to be a Gaussian with
mean

µθ(z
(α1);α1, α0) =

z(α1) −√1− αtεθ(z(α1);α1, α0)√
α1

and standard deviation 1/
√

2π (chosen such that normalization constant is 1). Thus, with

z(0) =
z(α1) −√1− αtε√

α1

we have that:

log pθ(z
(α0)|z(α1)) =

1− α1

2(2π)dα1
‖ε− εθ(z(α1);α1, α0)‖22 (A.95)

which gives us the weight of ŵ for α1. Furthermore:

Ez(α0:T ) [log pθ(z
(αT ))− q(z(αT )|z(α0))] = 0 (A.96)

because z(αT ) ∼ N (0, I) for both pθ and q. Therefore, we have that:

Ez(1)∼qφ(z(1)|x)[`di�(z(1); ŵ, θ)] ≤ Ez(1)∼qφ(z(1)|x)[log pθ(z
(1))] (A.97)

which completes the proof.
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A.6.2 D2 models address latent posterior mismatch in VAEs

Theorem 13. (informal) Let pθ(z) = N (0, 1). For any ε > 0, there exists a distribution qφ(z) with

an (ε, 0.49)-prior hole, such that DKL(qφ‖pθ) ≤ log 21andW2(qφ, pθ) < γ for any γ > 0, where

W2 is the 2-Wasserstein distance.

Theorem 20. (formal) Let pθ(z) = N (0, I) where z ∈ Rd. For any ε > 0, δ < 0.5, there exists a

distribution qφ(z) with an (ε, δ)-prior hole, such that DKL(qφ‖pθ) ≤ log 2 andW2(qφ, pθ) < γ for

any γ > 0, whereW2 is the 2-Wasserstein distance.

Proof. Let us de�ne a function f : R≥0 → [0, 1] such that for any Euclidean ball B(0, R) centered
at 0 with radius R:

f(R) :=

∫
B(0,R)

pθ(z) dz, (A.98)

i.e., f(R) measures the probability mass of the Gaussian distribution pθ(z) within B(0, R). As
df/dR > 0 for R > 0, f is invertible.

p (z) q (z)

0.0
0.2
0.4
0.6
0.8
1.0

Figure A.1: Illustration of the construction in 2d. When we use more rings, the prior hole and upper
bound of KL divergence are constant but the upper bound of Wasserstein distance decreases.

Now we shall construct qφ(z). First, let qφ(z) = pθ(z) whenever ‖z‖2 ≥ f−1(2δ); then for any
n, we can �nd a sequence {r0, r1, . . . , r2n} such that:

r0 = 0, r2n = f−1(2δ), f(ri)− f(ri−1) = f−1(2δ)δ/n for all k ∈ {1, . . . , 2n}, (A.99)

Intuitively, we �nd 2n circles with radii {r0, . . . , r2n} whose masses measured by pθ(z) is an
1This is reasonably low for realistic VAE models (NVAE [VK20] reports a KL divergence of around 2810 nats).
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arithmetic progression {0, δ/2n, . . . , 2δ}. We then de�ne qφ(z) for ‖z‖ < f−1(2δ) as follows:

qφ(z) =

2 · pθ(z) if ‖z‖ ∈ ⋃n−1
k=0 [r2k, r2k+1)

0 otherwise
(A.100)

Intuitively, qφ is de�ned by moving all the mass from ring (2k + 1) to ring 2k. Note that this qφ(z)

is a valid probability distribution because:∫
Rd
qφ(z) dz =

∫
B(0,f−1(2δ))

qφ(z) dz +

∫
Bc(0,f−1(2δ))

qφ(z) dz (A.101)

= 2

∫
B(0,f−1(2δ))

pθ(z)I

(
‖z‖ ∈

n−1⋃
i=0

[r2k, r2k+1)

)
dz +

∫
Bc(0,f−1(2δ))

pθ(z) dz

(A.102)

=

∫
B(0,f−1(2δ))

pθ(z) dz +

∫
Bc(0,f−1(2δ))

pθ(z) dz = 1 (A.103)

Next, we validate that qφ satis�es our constraints in the statement.

Prior hole Apparently, if we choose S =
⋃n−1
k=0 [r2k+1, r2k+2), then

∫
S pθ(z) dz = δ and∫

S qφ(z) dz = 0; so S instantiates a (ε, δ)-prior hole.

KL divergence We note that qφ(z) ≤ 2pθ(z) is true for all z, so

DKL(qφ(z)‖pθ(z)) = Ez∼qφ(z)[log qφ(z)− log pθ(z)] ≤ log 2.

2 Wasserstein Distance We use the Monge formulation:

W2(qφ(z), 2pθ(z)) = min
T :qφ=T]pθ

∫
Rd
‖z− T (z)‖22pθ(z) dz (A.104)

where T is any transport map from pθ to qφ. Consider the transport map T̂ such that:

T̂ (z) =

z if qφ(z) ≥ 0

z · f−1(f(‖z‖)− f(r2k+1) + kδ/n) otherwise, for k such that ‖z‖2 ≤ [r2k+1, r2k+2)

(A.105)
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which moves the mass in [r2k+1, r2k+2) to [r2k, r2k+1). From this de�nition, we have that ‖T̂ (z)−
z‖2 ≤ maxk∈{0,...,n−1}(r2k+2 − r2k). Moreover, since by de�nition,

2δ/n =

∫
B(0,r2k+2)

pθ(z) dz−
∫
B(0,r2k)

pθ(z) dz (A.106)

> π(r2
2k+2 − r2

2k) min
z:‖z‖∈[r2k,r2k+2)

pθ(z) (A.107)

> π(r2k+2 − r2k)
2 min
z:‖z‖∈[r2k,r2k+2)

pθ(z) (A.108)

We have that

W2(qφ(z), 2pθ(z)) ≤ max
k∈{0,...,n−1}

(r2k+2 − r2k)
2 <

2δ

πnminz:‖z‖2≤r2n pθ(z)
(A.109)

<
2δ

πnminz:‖z‖2≤r2n pθ(f
−1(2δ)n)

(A.110)

for any vector n with norm 1. Note that the above inequality is inversely proportional to n, which
can be any integer. Therefore, for a �xed δ, W2(qφ(z), 2pθ(z)) = O(1/n); so for any γ, there exists
n such that W2(qφ(z), 2pθ(z)) < γ, completing the proof.

Note on DDIM prior preventing the prior hole For a noise level α, we have that:

q(α)(z(α)) = Ez(1)∼q(1)(z(1) [N (
√
αz(1), (1− α)I)] (A.111)

as α → 0, DKL(q(α)(z(α))‖N (0, I))→ 0. From Pinsker’s inequality and the de�nition of (ε, δ)-
prior hole:

δ − ε ≤ DTV(q(α)(z(α)),N (0, I))) ≤
√

1

2
DKL(q(α)(z(α))‖N (0, I)), (A.112)

we should not expect to see any (ε, δ)-prior hole where the di�erence between δ and ε is large.

A.7 Proofs for Chapter 9

Proof. For any (x, v) and (x′, v′), g satis�es:

g(x′, v′|x, v) =
1

2

∣∣∣det∂f(x, v)

∂(x, v)

∣∣∣−1
I(x′, v′ = f(x, v)) +

1

2

∣∣∣det∂f(x, v)

∂(x, v)

∣∣∣I(x′, v′ = f−1(x, v))
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=
1

2
I(x′, v′ = f(x, v)) +

1

2
I(x′, v′ = f−1(x, v))

=
1

2
I(x, v = f−1(x′, v′)) +

1

2
I(x, v = f(x′, v′))

= g(x, v|x′, v′) (A.113)

where I(·) is the indicator function, the �rst equality is the de�nition of g(x′, v′|x, v), the second
equality is true since f(x, v) is volume preserving, the third equality is a reparametrization of the
conditions, and the last equality uses the de�nition of g(x, v|x′, v′) and f is volume preserving, so
the determinant of the Jacobian is 1.

Theorem 14 allows us to use the ration p(x′, v′)/p(x, v) when performing the MH step.

A.8 Proofs for Chapter 10

We use v̂i(s), q̂i(s, ai) and Q(τ) to represent v̂i(s;π, v), q̂i(s, ai;π, v) and Q(τ ;π, v), where we
implicitly assume dependency over π and v.

A.8.1 Proof to Lemma 10

For any policy π, fv(π, v̂) = 0 when v̂ is the value function of π (due to Bellman equations).
However, only policies that form a Nash equilibrium satis�es the constraints in Eq. 10.2; we
formalize this in the following Lemma.

Lemma 10. Let v̂i(s;π, v) be the solution to the Bellman equation

v̂i(s) = Eπ[ri(s,a) + γ
∑
s′∈S

P (s′|s,a)v̂i(s
′)]

and q̂i(s, ai) = Eπ−i [ri(s,a) + γ
∑

s′∈S P (s′|s,a)v̂i(s
′)]. Then for any π,

fv(π, v̂(π)) = 0

Furthermore, π is Nash equilibrium under r if and only if v̂i(s) ≥ q̂i(s, ai) for all i ∈ [N ], s ∈
S, ai ∈ Ai.
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Proof. By de�nition of v̂i(s) we have:

v̂i(s) = Eπ[ri(s,a) + γ
∑
s′∈S

P (s′|s,a)v̂i(s
′)]

= EπiEπ−i [ri(s,a) + γ
∑
s′∈S

P (s′|s,a)v̂i(s
′)]

= Eπi [q̂i(s, ai)]

which uses the fact that ai and a−i are independent conditioned on s. Hence fv(π, v̂) = 0

immediately follows.
If π is a Nash equilibrium, and at least one of the constrains does not hold, i.e. there exists some

i and s, ai such that v̂(s) < q̂(s, ai), then agent i can achieve a strictly higher expected return if
it chooses to take actions ai whenever it encounters state si and follow πi for rest of the states,
which violates the Nash equilibrium assumption.

If the constraints hold, i.e. for all i and (s, ai), v̂i(s) ≥ q̂i(s, ai) then

v̂i(s) ≥ Eπi [q̂i(s, ai)] = v̂i(s)

so value iteration over v̂i(s) converges. If we can �nd another policy π′ such that v̂i(s) <

Eπ′i [q̂i(s, ai)], then there should be at least one violation in the constraints since π′i must be a
convex combination (expectation) over actions ai. Therefore, for any policy π′i and action ai for
any agent i, Eπi [q̂i(s, ai)] ≥ Eπ′i [q̂i(s, ai)] always hold, so πi is the optimal response to π−i, and π
constitutes a Nash equilibrium when we repeat this argument for all agents.

Notably, Theorem 3.8.2 in [FV12] discusses the equivalence by assuming fv(π, v) = 0 for some
v; if v satis�es the assumptions, then v = v̂′.

A.8.2 Proof to Theorem 15

Proof. If π is a Nash equilibrium, and at least one of the constraints does not hold, i.e. there exists
some i and {s(j), a

(j)
i }tj=0, such that

v̂i(s
(0)) < Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i )]

Then agent i can achieve a strictly higher expected return on its own if it chooses a particular
sequence of actions by taking a(j)

i whenever it encounters state s(j), and follow πi for the remaining
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states. We note that this is in expectation over the policy of other agents. Hence, we construct a
policy for agent i that has strictly higher value than πi without modifying π−i, which contradicts
the de�nition of Nash equilibrium.

If the constraints hold, i.e for all i and {s(j), a
(j)
i }tj=0,

v̂i(s
(0)) ≥ Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i )]

then we can construct any q̂i(s(0), a
(0)
i ) via a convex combination by taking the expectation over

πi:
q̂i(s

(0), a
(0)
i ) = Eπi [Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i )]]

where the expectation over πi is taken over actions {a(j)
i }tj=0 (the expectation over states are

contained in the inner expectation over π−i). Therefore, ∀i ∈ [N ], s ∈ S, ai ∈ Ai,

v̂i(s) ≥ q̂i(s, ai)

and we recover the constraints in Eq. 10.2. By Lemma 10, π is a Nash equilibrium.

A.8.3 Proof to Theorem 16

Proof. We use Q?, q̂?, v̂? to denote the Q, q̂ and v̂ quantities de�ned for policy π?. For the two
terms in L(t+1)

r (π?, λ?π) we have:

L(t+1)
r (π?, λ?π) =

N∑
i=1

∑
τi∈Ti

λ?(τi)(Q
?
i (τi)− v̂?i (s(0))) (A.114)

For any agent i, we note that

∑
τi∈Ti

λ?(τi)Q
?
i (τi) = EπiEπ?−i [

t−1∑
j=0

γjri(s
(j), a(j)) + γtq̂?i (s

t, a
(t)
i )]

which amounts to using πi for agent i for the �rst t steps and using π?i for the remaining steps,
whereas other agents follow π?−i. As t → ∞, this converges to Eπi,π?−i [ri] since γt → 0 and
q?i (s

(t), a
(t)
i ) is bounded. Moreover, for v̂?i (s(0)), we have

∑
τi∈Ti

λ?(τi)v̂
?
i (s

(0)) = Es(0)∼η[v̂
?
i (s

(0))] = Eπ? [ri]
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Combining the two we have

L(t+1)
r (π?, λ?π) =

N∑
i=1

Eπi,π?−i [ri]−
N∑
i=1

Eπ? [ri]

which describes the di�erences in expected rewards.

A.8.4 Proof to Theorem 17

Proof. De�ne the “MARL” objective for a single agent i where other agents have policy πEi :

MARLi(ri) = max
πi

Hi(πi) + Eπi,πE−i [ri]

De�ne the “MAIRL” objective for a single agent i where other agents have policy πE :

MAIRLi,ψ(π?) = arg max
ri

ψi(ri) + EπE [ri]− (max
πi

Hi(πi) + Eπi,πE−i [ri])

Since ri and πi’s are independent in the MAIRL objective, the solution to MAIRLψ can be represented
by the solutions of MAIRLi,ψ for each i:

MAIRLψ = [MAIRL1,ψ, . . . ,MAIRLN,ψ]

Moreover, the single agent “MARL” objective MARLi(ri) has a unique solution πEi , which also
composes the (unique) solution to MARL (which we assumed in Section 10.3. Therefore,

MARL(v) = [MARL1(r1), . . . ,MARLN (rN )]

So we can use Proposition 3.1 in [HE16] for each agent i with MARLi(ri) and MAIRLi,ψ(π?) and
achieve the same solution as MARL ◦MAIRLψ .

A.8.5 Proof to Proposition 5

Proof. From Corollary A.1.1 in [HE16], we have

ψ?GA(ρπ − ρπE ) = max
D∈(0,1)S×A

Eπ[logD(s, a)] + EπE [log(1−D(s, a))] ≡ DJS(ρπ, ρπE )
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where DJS denotes Jensen-Shannon divergence (which is a squared metric), and ≡ denotes equiva-
lence up to shift and scaling.

Taking the min over this we obtain

arg min
π

N∑
i=1

ψ?GA(ρπ − ρπE ) = πE

Similarly,

arg min
π

N∑
i=1

ψ?GA(ρπi,πE−i − ρπE ) = πE

So these two quantities are equal.



Appendix B

Additional Experimental Details &
Results

B.1 Chapter 2

B.1.1 Additional Experimental Details

Benchmark Tasks

Tasks We sample each dimension of (x,y) independently from a correlated Gaussian with mean 0

and correlation of ρ, where X = Y = R20. The true mutual information is computed as:

I(x,y) = −d
2

log
(

1− ρ

2

)
(B.1)

The initial mutual information is 2, and we increase the mutual information by 2 every 4k iterations,
so the total training iterations is 20k.

Architecture and training procedure For all the discriminative methods, we consider two
types of architectures – joint and separable. The joint architecture concatenates the inputs x,y,
and then passes through a two layer MLP with 256 neurons in each layer with ReLU activations at
each layer. The separable architecture learns two separate neural networks for x and y (denoted
as g(x) and h(y)) and predicts g(x)>h(y); g and h are two neural networks, each is a two layer
MLP with 256 neurons in each layer with ReLU activations at each layer; the output of g and h are
32 dimensions.

For the generative method, we consider the invertible �ow architecture described in [DKB14,

193
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DSDB16]. pθ, pφ, pψ are �ow models with 5 coupling layers (with scaling), where each layer
contains a neural network with 2 layers of 100 neurons and ReLU activation. For all the cases, we
use with the Adam optimizer [KB14] with learning rate 5× 10−4 and β1 = 0.9, β2 = 0.999 and
train for 20k iterations with a batch size of 64, following the setup in [POvdO+19].

Additional results We show the bias, variance and mean squared error of the discriminative

approaches in Table B.1. We include additional results for ISMILE with τ = 10.0.

Table B.1: Bias, Variance and MSE of the estimators under the joint critic.

Gaussian Cubic

MI 2 4 6 8 10 2 4 6 8 10

Bias

CPC 0.25 0.99 2.31 4.00 5.89 0.72 1.48 2.63 4.20 5.99
NWJ 0.12 0.30 0.75 2.30 2.97 0.66 1.21 2.04 3.21 4.70

SMILE (τ = 1.0) 0.15 0.30 0.32 0.18 0.03 0.47 0.77 1.16 1.64 2.16
SMILE (τ = 5.0) 0.13 0.11 0.19 0.54 0.86 0.71 1.22 1.55 1.84 2.16

SMILE (τ = 10.0) 0.14 0.21 0.22 0.11 0.19 0.70 1.28 1.83 2.44 3.02
SMILE (τ =∞) 0.15 0.21 0.22 0.12 0.22 0.71 1.29 1.82 2.35 2.81

GM (Flow) 0.11 0.14 0.15 0.14 0.17 1.02 0.47 1.85 2.93 3.55

Var

CPC 0.04 0.04 0.02 0.01 0.00 0.03 0.04 0.03 0.01 0.01
NWJ 0.06 0.22 1.36 16.50 99.0 0.04 0.10 0.41 0.93 3.23

SMILE (τ = 1.0) 0.05 0.12 0.20 0.28 0.34 0.04 0.10 0.14 0.20 0.30
SMILE (τ = 5.0) 0.05 0.11 0.19 0.31 0.51 0.04 0.07 0.12 0.18 0.26

SMILE (τ = 10.0) 0.05 0.13 0.31 0.69 1.35 0.03 0.10 0.21 0.46 0.79
SMILE (τ =∞) 0.05 0.14 0.36 0.75 1.54 0.03 0.12 0.24 0.65 0.94

GM (Flow) 0.05 0.10 0.13 0.16 0.19 0.56 0.72 0.92 1.02 1.02

MSE

CPC 0.10 1.02 5.33 16.00 34.66 0.55 2.22 6.95 17.62 35.91
NWJ 0.07 0.32 2.19 33.37 28.43 0.47 1.55 4.56 11.13 27.00

SMILE (τ = 1.0) 0.08 0.21 0.30 0.32 0.31 0.26 0.69 1.49 2.90 4.98
SMILE (τ = 5.0) 0.07 0.13 0.22 0.57 1.26 0.54 1.56 2.53 3.58 4.92

SMILE (τ = 10.0) 0.07 0.18 0.36 0.67 1.33 0.52 1.75 3.54 6.41 9.91
SMILE (τ =∞) 0.08 0.19 0.40 0.76 1.62 0.54 1.75 3.55 6.09 8.81

GM (Flow) 0.07 0.11 0.14 0.17 0.22 1.65 0.91 4.36 9.70 13.67

We show the bias, variance and MSE results in Figure B.1. We also evaluate the variance of
estimating EQn [rτ ] (partition function with clipped ratios) for di�erent values of τ in the SMILE
estimator in Figure B.2b. With smaller τ we see a visible decrease in terms of variance in this term;
this is consistent with the variance estimates in Figure B.1, as there the variance of EPn [log r] is
also considered.
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Figure B.1: Bias / Variance / MSE of various estimators, on Gaussian (top) and Cubic (down).
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(a) Additional benchmark results on MINE estimator.
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Figure B.2: Additional benchmark results.

Self-consistency Experiments

Tasks We consider three tasks with the mutual information estimator Î :

1. Î(X;Y ) where X is an image from MNIST [LBBH98] or CIFAR10 [KSH12] and Y is the top
t rows of X . To simplify architecture designs, we simply mask out the bottom rows to be
zero, see Figure 3.3.

2. Î([X,X]; [Y ;h(Y )]) where X is an image, Y is the top t rows of X , h(Y ) is the top (t− 3)

rows of Y and [·, ·] denotes concatenation. Ideally, the prediction should be close to Î(X;Y ).

3. Î([X1, X2], [Y1, Y2]) where X1 and X2 are independent images from MNIST or CIFAR10, Y1

and Y2 are the top t rows of X1 and X2 respectively. Ideally, this prediction should be close
to 2 · Î(X;Y ).
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Architecture and training procedure We consider the same architecture for all the discrimi-

native approaches. The �rst layer is a convolutional layer with 64 output channels, kernel size of 5,
stride of 2 and padding of 2; the second layer is a convolutional layer with 128 output channels,
kernel size of 5, stride of 2 and padding of 2. This is followed another fully connected layer with
1024 neurons and �nally a linear layer that produces an output of 1. All the layers (except the last
one) use ReLU activations. We stack variables over the channel dimension to perform concatenation.

For the generative approach, we consider the following VAE architectures. The encoder archi-
tecture is identical to the discriminative approach except the last layer has 20 outputs that predict the
mean and standard deviations of 10 Gaussians respectively. The decoder for MNIST is a two layer
MLP with 400 neurons each; the decoder for CIFAR10 is the corresponding transposed convolution
network for the encoder. All the layers (except the last layers for encoder and decoder) use ReLU
activations. For concatenation we stack variables over the channel dimension. For all the cases, we
use with the Adam optimizer [KB14] with learning rate 10−4 and β1 = 0.9, β2 = 0.999. For IGM

we train for 10 epochs, and for the discriminative methods, we train for 2 epochs, due to numerical
stability issues of IMINE.

Additional experiments on scaling, rotation and translation We consider additional bench-
mark experiments on MNIST where instead of removing rows, we apply alternative transformations
such as random scaling, rotation and translations. For random scaling, we upscale the image ran-
domly by 1x to 1.2x; for random rotation, we randomly rotate the image between ±20 degrees;
for random translation, we shift the image randomly by no more than 3 pixels horizontally and
vertically. We consider evaluating the data processing and additivity properties, where the ideal
value for the former is no more than 1, and the ideal value for the latter is 2. From the results in
Table B.2, none of the considered approaches achieve good results in all cases.

Table B.2: Self-consistency experiments on other image transforms.

CPC MINE GM (VAE) SMILE (τ = 5.0) SMILE (τ =∞)

DP
Scaling 1.00 1.03 1.12 1.19 1.04

Rotation 1.00 1.30 1.13 1.03 1.27
Translation 1.00 1.28 1.01 1.07 1.08

Additivity
Scaling 1.00 1.55 1.89 1.04 1.18

Rotation 1.00 2.09 1.58 1.50 1.78
Translation 1.00 1.41 1.28 1.32 1.33
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B.2 Chapter 3

Time complexity of gradient calculation in ML-CPC

Suppose g is a neural network parametrized by θ, then the gradient to the ML-CPC objective is

∇θJ(gθ) = E

[
1

n

n∑
i=1

∇θgθ(xi,yi)
gθ(xi,yi)

−
∑n

j=1∇θgθ(xj ,yj) +
∑n

j=1

∑m−1
k=1 ∇θgθ(xj ,yj,k)∑n

j=1 g(xj ,yj) +
∑n

j=1

∑m−1
k=1 g(xj ,yj,k)

]

Computing the gradient through the an empirical estimate of J(gθ) requires us to perform back-
propagation through all nm critic evaluations, which is identical to the amount of back-propagation
passes needed for CPC. So the time complexity to compute the ML-CPC gradient is O(nm).

B.2.1 Pseudo-code and PyTorch implementation to ML-CPC
We include a PyTorch implementation to α-ML-CPC as follows.
def ml_cpc(logits, alpha):

"""
We assume that logits are of shape (n, m),
and the predictions over positive are logits[:, 0].
Alternatively, one can use kl_div() to ensure that the loss is non-negative.
"""
n, m = logits.size(0), logits.size(1)
beta = (m - alpha) / (m - 1)
pos = logits.select(1, 0)
neg = logits.narrow(1, 1, m)
denom = torch.cat([pos + torch.log(torch.tensor(alpha)).float(),

neg + torch.log(torch.tensor(beta)).float()], dim=1)
denom = denom.logsumexp(dim=1).logsumexp(dim=0)
loss = denom - pos.sum()
return loss / n

To ensure that the loss value is non-negative, one can alternatively use thekl_div() function
that evaluates the KL divergence between the predicted label distribution with a ground truth label
distribution. This is equivalent to the negative of the α-ML-CPC objective shifted by a constant.
We describe this idea in the following algorithm.

B.2.2 Experimental Details

Binary simulation experiments

Let X,Y be two binary r.v.s such that Pr(X = 1, Y = 1) = p, Pr(X = 0, Y = 0) = 1 − p. We
can simulate the case of a batch size of n with n− 1 negative samples. For the example of CPC, we
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Algorithm 6 Pseudo-code for α-ML-CPC
1: Input: the critic g, input values xi, yi, yj,k
2: Output: shifted negative objective value Jα(g) for optimization
3: Compute logit values `i,i = log g(xi,yi) + logα and `j,k = log g(xj ,yj,k) + log m−α

m−1 .
4: Compute the normalization value Z =

∑
i exp(`i,i) +

∑
j,k exp(`j,k).

5: Compute the predicted probabilities p′i,i = exp(`i,i)/Z , p′j,k = exp(`j,k)/Z
6: Assign the ground truth probabilities pi,i = 1/n, pj,k = 0.
7: Compute the KL divergence between p and p′.

have:

L(g) := E

[
1

n

n∑
i=1

log
n · g(xi,yi)∑n
j=1 g(xi,yj)

]
(B.2)

Since we are drawing from the above distribution, xi = yi is always true; therefore, we only need
to enumerate how many yj are di�erent from xi in order to compute one term of the expectation.
In the case where we have t pairs of (1, 1) and (n− t) pairs of (0, 0), then for g(1, 1) = g(0, 0) = 1,
g(0, 1) = g(1, 0) = 0 we have that:

1

n

n∑
i=1

log
n · g(xi,yi)∑n
j=1 g(xi,yj)

=
1

n

(
t log

n

t
+ (n− t) log

n

n− t

)
(B.3)

Moreover the probability of such an arrangement can be computed from the Binomial distribution

Pr(t pairs of (1, 1)) =

(
n

t

)
pt(1− p)n−t (B.4)

Therefore, we can compute the expectation that is L(g) in closed form by computing the sum for t
from 0 to n. We can apply a similar argument to computing the mean of ML-CPC values as well as
the variance of the empirical estimates. This allows us to analytically compute the optimal value of
the objective values, which allows us to perform direct comparisons over them.

Mutual information estimation

The general procedure follows that in [POvdO+19] and [SE19b].
Tasks We sample each dimension of (x,y) independently from a correlated Gaussian with

mean 0 and correlation of ρ, where X = Y = R20. The true mutual information is computed
as: I(x,y) = −d

2 log
(
1− ρ

2

)
The initial mutual information is 2, and we increase the mutual
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information by 2 every 4k iterations.
Architecture and training procedure We consider two types of architectures – joint and

separable. The joint architecture concatenates the inputs x,y, and then passes through a two
layer MLP with 256 neurons in each layer with ReLU activations at each layer. The separaable

architecture learns two separate neural networks for x and y (denoted as g(x) and h(y)) and
predicts g(x)>h(y); g and h are two neural networks, each is a two layer MLP with 256 neurons in
each layer with ReLU activations at each layer; the output of g and h are 32 dimensions. For all the
cases, we use with the Adam optimizer [KB14] with learning rate 1×10−3 and β1 = 0.9, β2 = 0.999

and train for 20k iterations with a batch size of 128.

Knowledge distillation

The general procedure follows that in [TKI19], where we use the same training hyperparameters.
Speci�cally, we train for 240 epochs with the SGD optimizer with a momentum of 0.9 and weight
decay of 5× 10−4. We use a default initial learning rate of 0.1, and divide the learning rate by 10 at
150, 180 and 210 epochs. We use 16384 negative samples per positive sample 1, and a temperature
of 0.07 for the critic. We did not additiaonlly include the knowledge distillation loss to reduce
potential compounding e�ects over the representation learning performance.

Unsupervised representation learning

For CIFAR10, the general procedure follows that of MoCo-v2 [HFW+19, CFGH20], with some slight
changes adapted to CIFAR-10. First, we use the standard ResNet50 adaptation of 3 × 3 kernels
instead of 7 × 7 kernels used for the larger resolution ImageNet, with representation learning
dimension of 2048. Next, we use a temperature of τ = 0.07, a batch size of 256 and a learning rate
of 0.3 for the representation learner, and a learning rate of 3 for the linear classi�er; we observe that
these hyperparameters combinations is able to achieve higher performance on the CPC objective
for CIFAR-10, so we use these for all our other experiments. The remaining hyperparameters are
identical to the ImageNet setup for MoCo-v2. For ImageNet, we use the same procedure as that
of MoCo-v2, except that we trained the representations for merely 30 epochs with a ResNet-18
network, instead of training on ResNet-50 for 800 epochs.

1We note that this is smaller than what is used in [TKI19], and it is possible to achieve additional (though not much)
improvements by using more negative samples.
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B.3 Chapter 4

B.3.1 Experimental Setup Details

We consider the following setup for our experiments.

• For MIFR, we modify the weight for reconstruction error α = 1, λ1 ∈ {0.0, 0.1, 0.2, 1.0, 2.0}
and λ2 ∈ {0.1, 0.2, 1.0, 2.0, 5.0} for the constraints, which creates a total of 52 = 25

con�gurations; λ1 values smaller since high values of λ1 prefers solutions with low Iq(x; z|u).

• For L-MIFR, we modify ε1 and ε2 according to the estimated values for each dataset. This
allows us to claim results that holds for a certain hyperparameter in general (even as other
hyperparameter change).

• We use the Adam optimizer with initial learning rate 1e− 3 and β1 = 0.5 where the learning
rate is multiplied by 0.98 every 1000 optimization iterations, following common settings for
adversarial training [GAA+17].

• For L-MIFR, we initialize the λi parameters to 1.0, and allow for a range of (0.01, 100).

• Unless otherwise speci�ed, we update pψ(u|z) 10 times per update of qφ(z|x,u) and pθ(x|z,u).

• For Adult and Health we optimize for 2000 epochs; for German we optimize for 10000 epochs
(since there are only 1000 low dimensional data points).

• For both cases, we consider qφ(z|x,u), pθ(x|z,u), pψ(u|z) as a two layer neural networks
with a hidden layer of 50 neurons with softplus activations, and use z of dimension 10
for German and Adult, and 30 for Health. For the joint of two variables (i.e. (x,u)) we
simply concatenate them at the input layer. We �nd that our conclusions are insensitive
to a reasonable change in architectures (e.g. reduce number of neurons to 50 and z to 25
dimensions).

B.3.2 Comparison with LAFTR

Our work have several notable di�erences from prior methods (such as LAFTR [MCPZ18]) that
make it hard to compare them directly. First, we do not assume access to the prediction task while
learning the representation, thus our method does not directly include the “classi�cation error”
objective. Second, our method is able to deal with any type of sensitive attributes, as opposed to
binary ones.
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Nevertheless, we compare the performance of MIFR and LAFTR (Madras et al.) with the
demographic parity notion of fairness (measured by DeltaDP , lower is better). To make a fair
comparison, we add a classi�cation error to MIFR during training. MIFR achieves an accuracy of
0.829 and ∆DP of 0.037, whereas LAFTR achieves an accuracy of 0.821 and ∆DP of 0.029. This
shows that MIFR and LAFTR are comparable in terms of the accuracy / fairness trade-o�. MIFR is
still useful for sensitive attributes that are not binary, such as Health, which LAFTR cannot handle.

We further show a comparison of ∆DP , ∆EO , ∆EOpp between L-MIFR and LAFTR [MCPZ18]
on the Adult dataset in Table B.3, where L-MIFR is trained with the procedure in Section 5.5.6.
While LAFTR achieves better fairness on each notion if it is speci�cally trained for that notion, it
often achieves worse performance on other notions of fairness. We note that L-MIFR uses a logistic
regression classi�er, whereas LAFTR uses a one layer MLP. Moreover, these measurements are also
task-speci�c as opposed to mutual information criterions.

Table B.3: Comparison between L-MIFR and LAFTR on ∆DP , ∆EO , ∆EOpp metrics from [MCPZ18].
While LAFTR achieves better fairness on individual notions if it is trained for that notion, it often
trades that with other notions of fairness.

∆DP ∆EO ∆EOpp

L-MIFR 0.057 0.123 0.026
LAFTR-DP 0.029 0.244 0.027
LAFTR-EO 0.125 0.074 0.037

LAFTR-EOpp 0.098 0.154 0.022

B.3.3 Extension to Equalized Odds and Equalized Opportunity

If we are also provided labels y for a particular task, in the form of Dl = {(xi,ui, yi)}Mi=1, we can
also use the representations to predict y, which leads to a third condition:

3. Classi�cation z can be used to classify y with high accuracy.

We can either add this condition to the primal objective in Equation 5.1, or add an additional
constraint that we wish to have accuracy that is no less than a certain threshold.

With access to binary labels, we can also consider information-theoretic approaches to equalized

odds and equalized opportunity [HPS16]. Recall that equalized odds requires that the predictor and
sensitive attribute are independent conditioned on the label, whereas equalized opportunity requires
that the predictor and sensitive attribute are independent conditioned on the label being positive.
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In the case of learning representations for downstream tasks, our notions should consider any
classi�er over z.

For equalized odds, we require that z and u have low mutual information conditioned on the
label, which is Iq(z,u|y). For equalized opportunity, we require that z and u have low mutual
information conditioned on the label y = 1, which is Iq(z,u)|y=1.

We can still apply the upper bounds similar to the case in C2. For equalized opportunity we
have

Iq(z;u)|y=1 ≤ Eqφ(z,u,y|y=1)[DKL(qφ(u|z, y)‖p(u))]−DKL(q(u)‖p(u)) := IEO

≤ Eqφ(z,u,y|y=1)[DKL(qφ(u|z, y)‖p(u))]

For equalized odds we have

Iq(z;u|y) = q(1)Iq(z;u)|y=1 + q(0)Iq(z;u)|y=0 := IEOpp

≤ q(1)Eqφ(z,u,y|y=1)[DKL(qφ(u|z, y)‖p(u))] + q(0)Eqφ(z,u,y|y=0)[DKL(qφ(u|z, y)‖p(u))]

which can be implemented by using a separate classi�er for each y or using y as input. If y is an
input to the classi�er, our mutual information formulation of equalized odds does not have to be
restricted to the case where y is binary.

B.4 Chapter 5

B.4.1 Example KL-WGAN Implementation in PyTorch
def get_kl_ratio(v):

vn = torch.logsumexp(v.view(-1), dim=0) - torch.log(torch.tensor(v.size(0)).float())
return torch.exp(v - vn)

def loss_kl_dis(dis_fake, dis_real, temp=1.0):
"""
Critic loss for KL-WGAN.
dis_fake, dis_real are the critic outputs for generated samples and real samples.
temp is a hyperparameter that scales down the critic outputs.
We use the hinge loss from BigGAN PyTorch implementation.
"""
loss_real = torch.mean(F.relu(1. - dis_real))
dis_fake_ratio = get_kl_ratio(dis_fake / temp)
dis_fake = dis_fake * dis_fake_ratio
loss_fake = torch.mean(F.relu(1. + dis_fake))
return loss_real, loss_fake

def loss_kl_gen(dis_fake, temp=1.0):
"""
Generator loss for KL-WGAN.
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dis_fake is the critic outputs for generated samples.
temp is a hyperparameter that scales down the critic outputs.
We use the hinge loss from BigGAN PyTorch implementation.
"""
dis_fake_ratio = get_kl_ratio(dis_fake / temp)
dis_fake = dis_fake * dis_fake_ratio
loss = -torch.mean(dis_fake)
return loss

B.4.2 Argument about χ2-Divergences

We present a similar argument to Theorem 9 to χ2-divergences, where f(u) = (u− 1)2.

Theorem 21. Let f(u) = (u− 1)2 and F is a set of real-valued bounded measurable functions on

X . For any �xed choice of P,Q, and T ∈ F such that T ≥ 0, T − E[T ] + 2 ≥ 0, we have

arg min
r∈∆(Q)

EQ[f(r)] + EP [T ]− EQr [T ] =
T − EQ[T ] + 2

2

Proof. Consider the following Lagrangian:

h(r, λ) := EQ[f(r)]− EQ[r · T ] + λ(EQ[r]− 1) (B.5)

where λ ∈ R and we formalize the constraint r ∈ ∆(r) with EQ[r]− 1 = 0. Taking the functional
derivative ∂h/∂r and setting it to zero, we have:

f ′(r) dQ− T dQ+ λ (B.6)

= 2r dQ− T dQ+ λ = 0,

so r = (T − λ)/2. We can then apply the constraint EQ[r] = 1, where we solve λ = EQ[T ]− 2,
and consequently the optimal r = (T − EQ[T ] + 2)/2 ∈ ∆(Q).

In practice, when the constraint T − EQ[T ] + 2 ≥ 0 is not true, then one could increase the
values when T is small, using

T̂ = max(T, c) + b (B.7)

where b, c are some constants that satis�es ˆT (x)−EQ[T̂ ] + 2 ≥ 0 for all x ∈ X . Similar to the KL
case, we encourage higher weights to be assigned to higher quality samples.
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If we plug in this optimal r, we obtain the following objective:

EP [T ]− EQ[T ] +
1

4
EQ[T 2] +

1

4
(EQ[T ])2 = EP [T ]− EQ[T ]− VarQ[T ]

4
. (B.8)

Let us now consider P = pdata, Q = pdata+Gθ
2 , then the f -divergence corresponding to

f(u) = (u− 1)2:

Df (P‖Q) =

∫
X

(P (x)−Q(x))2

P (x)+Q(x)
2

dx, (B.9)

is the squared χ2-distance between P and Q. So the objective becomes:

min
θ

max
φ

Epdata [Dθ]− EGθ [Dφ]−VarMθ
[Dφ], (B.10)

where Mθ = (pdata + Gθ)/2 and we replace T/2 with Dφ. In comparison, the χ2-GAN objec-
tive [TCH+18] for θ is:

(Epdata [Dθ]− EGθ [Dφ])2

VarMθ
[Dφ]

. (B.11)

They do not exactly minimize χ2-divergence, or a squared χ2-divergence, but a normalized version
of the 4-th power of it, hence the square term over Epdata [Dθ]− EGθ [Dφ].

B.4.3 Additional Experimental Details

For 2d experiments, we consider the WGAN and KL-WGAN objectives with the same architec-
ture and training procedure. Speci�cally, our generator is a 2 layer MLP with 100 neurons and
LeakyReLU activations on each hidden layer, with a latent code dimension of 2; our discriminator
is a 2 layer MLP with 100 neurons and LeakyReLU activations on each hidden layer. We use
spectral normalization [MKKY18] over the weights for the generators and consider the hinge loss
in [MKKY18]. Each dataset contains 5,000 samples from the distribution, over which we train both
models for 500 epochs with RMSProp (learning rate 0.2). The procedure for tabular experiments is
identical except that we consider networks with 300 neurons in each hidden layer with a latent
code dimension of 10.
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B.4.4 Samples

We show uncurated samples from BigGAN trained with WGAN and KL-WGAN loss in Fig-
ures B.3a, B.4a, B.3b, and B.4b.

(a) CelebA 64x64 samples trained with WGAN. (b) CelebA 64x64 Samples trained with KL-
WGAN.
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(a) CIFAR samples trained with WGAN.

(b) CIFAR samples trained with KL-WGAN.
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B.5 Chapter 6

B.5.1 Numerosity Containment

[ZRY+18] systematically investigate generalization in deep generative models using two di�erent
datasets: (a) a toy dataset where there are k non-overlapping dots (with random color and location)
in the image (see Figure B.5a), and (b) the CLEVR dataset where ther are k objects (with random
shape, color, location, and size) in the images (see Figure B.5b). They train a GAN model (WGAN-
GP [GAA+17]) with (either) dataset and observe that the learned distribution does not produce the
same number of objects as in the dataset it was trained on. The distribution of the numerosity in
the generated images is centered at the numerosity from the dataset, with a slight-bias towards
over-estimation. For, example when trained on images with six dots, the generated images contain
anywhere from two to eight dots (see Figure B.6a). The observation is similar when trained on
images with two CLEVR objects. The generated images contain anywhere from one to three dots
(see Figure B.6b).

In order to remove samples with numerosity di�erent from the train dataset, we use such
samples as negative data during training. For example, while training on images with six dots we
use images with four, �ve and seven dots as negative data for the GAN. The resulting distribution
of the numerosity in the generated images is constrained to six. We observe similar behaviour
when training a GAN with images containing two CLEVR objects as positive data and images with
one or three objects as negative data.

(a) Dots

(b) CLEVR

Figure B.5: Toy Datasets used in Numerosity experiments.



APPENDIX B. ADDITIONAL EXPERIMENTAL DETAILS & RESULTS 208

(a) (b)

Figure B.6: Left: Distribution over number of dots. The arrows are the number of dots the learning
algorithm is trained on, and the solid line is the distribution over the number of dots the model
generates. Right: Distribution over number of CLEVR objects the model generates. Generating
CLEVR is harder so we explore only one, but the behaviour with NDA is similar to dots.

B.5.2 Image Transformations

Given an image of size H ×W , the di�erent image transformations that we used are described
below.

Jigsaw-K [NF16] We partition the image into a grid of K ×K patches of size (H/K)× (W/K),
indexed by [1, . . . ,K × K]. Then we shu�e the image patches according to a random
permutation (di�erent from the original order) to produce the NDA image. Empirically, we
�nd K = 2 to work the best for Jigsaw-K NDA.

Stitching We stitch two equal-sized patches of two di�erent images, either horizontally (H/2×W )
or vertically (H ×W/2), chosen uniformly at random, to produce the NDA image.

Cutout / Cutmix We select a random patch in the image with its height and width lying between
one-third and one-half of the image height and width respectively. To construct NDA images,
this patch is replaced with the mean pixel value of the patch (like cutout [DT17] with the
only di�erence that they use zero-masking), or the pixel values of another image at the same
location (cutmix [YHO+19]).

Mixup-α NDA image is constructed from a linear interpolation between two images x and
y [ZCDLP17], γx+ (1− γ)y; γ ∼ Beta(α, α). α is chosen so that the distribution has high
density at 0.5.

Other classes NDA images are sampled from other classes in the same dataset. See Appendix A.
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B.5.3 What does the theory over GANs entail?

Our goal is to show that NDA GAN objectives are principled in the sense that with in�nite
computation, data, and modeling capacity, NDA GAN will recover the same optimal generator
as a regular GAN. In other words, under these assumptions, NDA will not bias the solution in an
undesirable way. We note that the NDA GAN objective is as stable as regular GAN in practice since
both methods estimate a lower bound to the divergence with the discriminator, and then minimize
that lower bound w.r.t. the generator. The estimated divergences are slightly di�erent, but they
have the same minimizer (which is the ground truth data distribution). Intuitively, while GAN and
NDA GAN will give the same solution asymptotically, NDA GAN might get there faster (with less
data) because it leverages a stronger prior over what the support should (not) be.

B.5.4 Pix2Pix

Figure B.7 highlights the qualitative improvements when we apply the NDA method to Pix2Pix
model [IZZE17].

Figure B.7: Qualitative results on Cityscapes.

B.5.5 Anomaly Detection

Here, we show the histogram of di�erence in discriminator’s output for clean and OOD samples
in Figure B.8. High di�erence values imply that the Jigsaw NDA is better at distinguishing OOD
samples than the normal BigGAN.
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(a) Gaussian Noise (b) Speckle Noise (c) JPEG Compression

Figure B.8: Histogram of D(clean) - D(corrupt) for 3 di�erent corruptions.

B.5.6 E�ect of hyperparameter on Unconditional Image generation

Here, we show the e�ect of λ for unconditional image generation on CIFAR-10 dataset.

Table B.4: E�ect of λ on the FID score for unconditional image generation on CIFAR-10 using
Jigsaw as NDA.

λ 1.0 0.75 0.5 0.25 0.15

FID 18.64 16.61 14.95 12.61 13.01

B.5.7 Unsupervised Learning on Images

0.65 0.45 0.45 0.38 0.57 0.43 0.41 0.36 0.54 0.41 0.50 0.37

Figure B.9: Comparing the cosine distance of the representations learned with Jigsaw NDA and
Moco-V2 (shaded blue), and original Moco-V2 (white). With NDA, we project normal and its
jigsaw image representations further away from each other than the one without NDA.
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Dataset Preparation for FID evaluation For dataset preparation, we follow the the following
procedures: (a) CIFAR-10 contains 60K 32×32 images with 10 labels, out of which 50K are used for
training and 10K are used for testing, (b) CIFAR-100 contains 60K 32 × 32 images with 100 labels,
out of which 50K are used for training and 10K are used for testing, (c) CelebA contains 162,770
train images and 19,962 test images (we resize the images to 64×64px), (d) STL-10 contains 100K
(unlabeled) train images and 8K (labeled) test images (we resize the images to 32×32px). In our
experiments the FID is calculated on the test dataset. In particular, we use 10K generated images vs.
10K test images for CIFAR-10, 10K vs. 10K for CIFAR-100, 19,962 vs. 19,962 for CelebA, and 8K vs
8K for STL-10.

Hyperparameters and Network Architecture

Generative Modeling. We use the same network architecture in BigGAN [BDS18] for our
experiments. The code used for our experiments is based over the author’s PyTorch code. For
CIFAR-10, CIFAR-100, and CelebA we train for 500 epochs whereas for STL-10 we train for 300
epochs. For all the datasets we use the following hyperparameters: batch-size = 64, generator
learning rate = 2e-4, discriminator learning rate = 2e-4, discriminator update steps per generator
update step = 4. The best model was selected on the basis of FID scores on the test set (as explained
above).

Momentum Contrastive Learning. We use the o�cial PyTorch implementation for our ex-
periments. For CIFAR-10 and CIFAR-100, we perform unsupervised pre-training for 1000 epochs
and supervised training (linear classi�er) for 100 epochs. For Imagenet-100, we perform unsuper-
vised pre-training for 200 epochs and supervised training (linear classi�er) for 100 epochs. For
CIFAR-10 and CIFAR-100, we use the following hyperparameters during pre-training: batch-size
= 256, learning-date = 0.3, temperature = 0.07, feature dimensionality = 2048. For ImageNet-100
pre-training we have the following: batch-size = 128, learning-date = 0.015, temperature = 0.2,
feature dimensionality = 128. During linear classi�cation we use a batch size of 256 for all the
datasets and learning rate of 10 for CIFAR-10, CIFAR-100, whereas for ImageNet-100 we use learning
rate of 30.

Dense Predictive Coding. We use the same network architecture and hyper-parameters in
DPC [HXZ19] for our experiments and use the o�cial PyTorch implementation. We perform

7_nda:https://github.com/ajbrock/BigGAN-PyTorch
7_nda:https://github.com/facebookresearch/moco
7_nda:https://github.com/TengdaHan/DPC
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self-supervised training on UCF-101 for 200 epochs and supervised training (action classi�er) for
200 epochs on both UCF-101 and HMDB51 datasets.

Code The code to reproduce our experiments is given here.

Implementation Details For our experiment over GAN, we augment the batch of real samples
with a negative augmentation of the same batch, and we treat the augmented images as fake images
for the discriminator. Similarly, for the contrastive learning experiments, we consider negative
augmentation of the query image batch as negatives for that batch.

For all our experiments we used existing open-source models. For experiments over GAN, we
use the open-source implementations of BigGAN and Pix2Pix models, and for contrastive learning,
we use the open-source implementation of the MoCo-v2 model and Dense Predictive Coding. Hence,
we did not explain in detail each of the models. Implementing NDA is quite simple as we only need
to generate NDA samples from the images in a mini-batch which only takes several lines of code.

Ablation study on negative samples We perform the experiments over MoCo-v2 which main-
tains a queue of negative samples. The number of negatives is around 65,536. With our approach,
we use the augmented versions of images in the same batch as negative. We transform both the key
and query images to create NDA samples. Thus, the number of negatives for our approach is 65,536
+ 2 (one NDA sample created using query image and other using key image), only 0.00003051664
times more than the original number of negatives samples in MoCo-v2. Thus our experiments are
comparable to the baseline MoCo-v2. In terms of computation, we need an additional forward pass
in each batch to get the representations of the NDA samples. The normal MoCo-v2 requires 1.09
secs for entire forward computation, which includes forward pass through the network, momentum
update of the key encoder and dot product between the positive and negative samples. With NDA,
1 forward computation requires 1.36 secs.

What happens when negative data augmentations are noisy? Regarding the performance
of negative data augmentation, we perform 2 di�erent experiments:

a) When the noise is low - When using jigsaw as our NDA strategy with a 2 x 2 grid, one out
of the 24 permutations will be the original image. We �nd that when this special permutation is
not removed, or there is 4% “noise”, the FID score is 12.61, but when it is removed the FID score
is 12.59. So, we �nd that when the noise is low, the performance of our approach is not greatly
a�ected and is robust in such scenarios.

7_nda:https://github.com/ermongroup/NDA
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b) When the noise is large - We use random vertical �ipping as our NDA strategy, where with
50% probability the image is vertically �ipped during NDA. In this case, the “noise” is large, as 50%
of the time, the negative sample is actually the original image. We contrast this with the “noise-free”
NDA strategy where the NDA image is always vertically �ipped. We �nd that for the random
vertical �ipping NDA, the FID score of BigGAN is 15.84, whereas, with vertical �ipping NDA, the
FID score of BigGAN is 14.74. So performance degrades with larger amounts of noise.

B.6 Chapter 7

B.6.1 Additional Details for D2C

Contrastive representation learning

In contrastive representation learning, the goal is to distinguish a positive pair (y,w) ∼ p(x,y)

from (m− 1) negative pairs (y,w) ∼ p(x)p(y). In our context, the positive pairs are represen-
tations from the same image, and negative pairs are representations from di�erent images; these
images are pre-processed with strong data augmentations [CKNH20] to encourage rich representa-
tions. With two random, independent data augmentation procedures de�ned as aug1 and aug2, we
de�ne p(x,y) and p(x)p(y) via the following sampling procedure:

(y,w) ∼ p(x,y) : y ∼ qφ(z(1)|aug1(x)),w ∼ qφ(z(1)|aug2(x)),x ∼ pdata(x),

(y,w) ∼ p(x)p(y) : y ∼ qφ(z(1)|aug1(x1)),w ∼ qφ(z(1)|aug2(x2)),x1,x2 ∼ pdata(x).

For a batch ofn positive pairs {(yi,wi)}ni=1, the contrastive predictive coding (CPC, [vdOLV18])
objective is de�ned as:

LCPC(g; qφ) := E

[
1

n

n∑
i=1

log
m · g(xi,yi)

g(xi,yi) +
∑m−1

j=1 g(xi,yi,j)

]
(B.12)

for some positive critic function g : Y × Z → R+, where the expectation is taken over n positive
pairs (xi,yi) ∼ p(x,y) and n(m−1) negative pairs (xi,yi,j) ∼ p(x)p(y). Another interpretation
to CPC is that it performs m-way classi�cation where the ground truth label is assigned to the
positive pair. The representation learner qφ then aims to maximize the CPC objective, or to minimize
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the following objective:

−LC(qφ) := min
g
−LCPC(g; qφ), (B.13)

Di�erent speci�c implementations, such as MoCo [HFW+19, CFGH20, CXH21] and SimCLR [CKNH20]
can all be treated as speci�c implementations of this objective function. In this paper, we con-
sidered using MoCo-v2 [CKNH20] as our implementation for LC objective; in principle, other
implementations to CPC can also be integrated into D2C as well.

Training D2C

In Algorithm 7, we describe a high-level procedure that trains the D2C model; we note that this
procedure does not have any adversarial components. On the high-level, this is the integration of
three objectives: the reconstruction objective via the autoencoder, the di�usion objective over the
latent space, and the contrastive objective over the latent space. In principle, the [reconstruction],
[constrastive], and [di�usion] components can be optimized jointly or separately; we observe
that normalizing the latent z(1) with a global mean and standard deviation before applying the
di�usion objective helps learning the di�usion model with a �xed α series.
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Algorithm 7 Training D2C
Input: Data distribution pdata.
while training do

[Draw samples with data augmentation]

Draw m samples x0:m−1 ∼ pdata(x).
Draw (m+ 1) data augmentations aug0, . . . augm−1 and aug0.
for i← 0 to m− 1 do

Draw z
(1)
i ∼ qφ(z(1)|augi(x)).

end for
Draw z

(1)
0 ∼ qφ(z(1)|aug0(x)).

[Reconstruction]

Reconstruct x0 ∼ pθ(x|z(1)0 )

Minimize Lrecon = − log pθ(x|z(1)0 ) over θ and φ with gradient descent.

[Contrastive]

De�ne a classi�cation task: assign label 1 to (z
(1)
0 , z

(1)
0 ) and label 0 to (z

(1)
0 , z

(1)
i ) for i 6= 0.

De�ne LCPC(g; qφ) as the loss to minimize for the above task, with g as the classi�er.
De�ne ĝ as a minimizer to the classi�er objective LCPC(g; qφ).
Minimize LCPC(ĝ; qφ) over φ with gradient descent.

[Di�usion]

Sample ε ∼ N (0, I), t ∼ Uniform(1, . . . , T ).
De�ne z(αt)

0 =
√
αtz

(0)
0 +

√
1− αtε.

Minimize ‖ε− εθ(z(αt)
0 ;αt)‖22 over θ with gradient descent.

end while

B.6.2 Experimental details

Architecture details and hyperparameters used for training

We modify the NVAE [VK20] architecture by removing the “Combiner Cells” in both encoder and
decoder. For the di�usion model, we use the same architecture with di�erent number of channel mul-
tiplications, as used in [HJA20, SME20]. For Contrastive learning, we use the MoCo-v2 [CFGH20]
algorithm with augmentations such as RandomResizedCrop, ColorJitter, RandomGrayscale, Ran-

domHorizontalFlip.
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Table B.5: Hyperparameters across di�erent datasets

Hyperparameter CIFAR-10
32x32

CIFAR-100
32x32

CelebA-64
64x64

fMoW
64x64

CelebA-HQ-256
256x256

FFHQ-256
256x256

# of epochs 1000 1000 300 300 200 100

batch size per GPU 32 32 16 16 3 3

# initial channels in enc, 128 128 64 64 24 24

spatial dims of z 16*16 16*16 32*32 32*32 64*64 64*64

# channel in z 8 8 5 5 8 8

MoCo-v2 queue size 65536 65536 65536 65536 15000 15000

Di�usion feature map res. 16,8,4,2 16,8,4,2 32,16,8,4,1 32,16,8,4,1 64,32,16,8,2 64,32,16,8,2

λ−1 17500 17500 17500 17500 17500 17500

learning rate 0.001 0.001 0.001 0.001 0.001 0.001

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

# GPUs 8 8 4 4 8 8

GPU Type 16 GB V100 16 GB V100 12 GB Titan X 12 GB Titan X 16 GB V100 16 GB V100

Total training time (h) 24 24 120 120 96 96

Additional details about the hyperparameters used are provided in Table B.5.

Additional details for conditional generation

For rψ(c|z(1)) we consider training a linear model over the latent space, which has the advantage
of being computationally e�cient. For conditional generation on labels, we reject samples if their
classi�er return are lower than a certain threshold (we used 0.5 for all our experiments). For
conditional image manipulation, we consider the same step size η for each attribute: η = 10 for red
lipstick and η = 15 for blond. We note that these values are not necessarily the optimal ones, as the
intensity of the change can grow with a choice of larger η values.

Amazon Mechanical Turk procedure

The mechanical turk evaluation is done for di�erent attributes to �nd out how evaluators evaluate
the di�erent approaches. The evaluators are asked to compare a pair of images, and �nd the best
image, which retains the identity as well as contains the desired attribute. Figure B.10 a) shows the
instructions that was given to the evaluators before starting the test and Figure B.10 b) contains
the UI shown to the evaluators when doing comparison. Each evaluation task contains 10 pairwise
comparisons, and we perform 15 such evaluation tasks for each attribute. The reward per task is
kept as 0.25$. Since each task takes around 2.5 mins, so the hourly wage comes to be 6$ per hour.
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Figure B.10: a) Instructions shown to human evaluators for Amazon Mechanical Turk for blond
hair before starting the evaluation and b) UI shown to the evaluators when doing comparison.
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Table B.6: CIFAR-10 image generation results.

Method FID

NVAE [VK20] 51.71
NCP-VAE [ASKV20] 24.08
EBM [DM19] 40.58
StyleGAN2 [KLA+20] 3.26
DDPM [HJA20] 3.17
DDIM [SME20] 4.04
D2C 10.15

B.6.3 Additional Results

We list results for unconditional CIFAR-10 image generation for various types of generative models
in Table B.6. While our results are slightly worse than state-of-the-art di�usion models, we note
that our D2C models are trained with relatively fewer resources that some of the baselines; for
example, our D2C models is trained on 8 GPUs for 24 hours, whereas NVAE is trained on 8 GPUs
for 100 hours and DDPM is trained on v3-8 TPUs for 24 hours. We also note that these comparisons
are not necessarily fair in terms of the architecture and compute used to produce the samples.

We list additional image generation results in Figure B.11 (unconditional), Figures B.12, B.13, B.14,
and B.15 (conditional on manipulation constraints), and Figures B.16, B.17, B.18, and B.19 (condi-
tional on labels)2.

B.7 Chapter 8

B.7.1 Estimating E�ective Sample Size

Assume a target distribution p(x), and a Markov chain Monte Carlo (MCMC) sampler that produces
a set of N correlated samples {xi}N1 from some distribution q({xi}N1 ) such that q(xi) = p(xi).
Suppose we are estimating the mean of p(x) through sampling; we assume that increasing the
number of samples will reduce the variance of that estimate.

Let V = Varq[
∑N

i=1 xi/N ] be the variance of the mean estimate through the MCMC sam-
ples. The e�ective sample size (ESS) of {xi}N1 , which we denote as M = ESS({xi}N1 ), is the
number of independent samples from p(x) needed in order to achieve the same variance, i.e.

2We will list more results online after publication.
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Figure B.11: Additional image samples for the FFHQ-256 dataset.
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Original D2C StyleGAN2 NVAE DDIM

Figure B.12: Image manipulation results for blond hair.
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Original D2C StyleGAN2 NVAE DDIM

Figure B.13: Image manipulation results for red lipstick.
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Original D2C StyleGAN2 NVAE DDIM

Figure B.14: Image manipulation results for beard.



APPENDIX B. ADDITIONAL EXPERIMENTAL DETAILS & RESULTS 223

Original D2C StyleGAN2 NVAE DDIM

Figure B.15: Image manipulation results for gender.
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(a) Conditioned on non-blond label (b) Conditioned on blond label

Figure B.16: Conditional generation with D2C by learning from 100 labeled examples.

(a) Conditioned on non-blond label (b) Conditioned on blond label

Figure B.17: Conditional generation with DDIM by learning from 100 labeled examples.

Varp[
∑M

j=1 xj/M ] = V . A practical algorithm to compute the ESS given {xi}N1 is provided by:

ESS({xi}N1 ) =
N

1 + 2
∑N−1

s=1 (1− s
N )ρs

(B.14)

where ρs denotes the autocorrelation under q of x at lag s. We compute the following empirical
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(a) Conditioned on female label (b) Conditioned on male label

Figure B.18: Conditional generation with D2C by learning from 100 labeled examples.

(a) Conditioned on female label (b) Conditioned on male label

Figure B.19: Conditional generation with DDIM by learning from 100 labeled examples.

estimate ρ̂s for ρs:

ρ̂s =
1

σ̂2(N − s)
N∑

n=s+1

(xn − µ̂)(xn−s − µ̂) (B.15)

where µ̂ and σ̂ are the empirical mean and variance obtained by an independent sampler.
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Due to the noise in large lags s, we adopt the approach of [HG14] where we truncate the sum
over the autocorrelations when the autocorrelation goes below 0.05.

B.7.2 Justi�cations for Objective in Equation 9.3

We consider two necessary conditions for pd to be the stationary distribution of the Markov chain,
which can be translated into a new algorithm with better optimization properties, described in
Equation 9.3.

Proposition 8. Consider a sequence of ergodic Markov chains over state space S . De�ne πn as the

stationary distribution for the n-th Markov chain, and πtn as the probability distribution at time step t

for the n-th Markov chain. If the following two conditions hold:

1. ∃b > 0 such that the sequence {πbn}∞n=1 converges to pd in total variation;

2. ∃ε > 0, ρ < 1 such that ∃M > 0,∀n > M , if ‖πtn − pd‖TV< ε, then ‖πt+1
n − pd‖TV<

ρ‖πtn − pd‖TV ;

then the sequence of stationary distributions {πn}∞n=1 converges to pd in total variation.

Proof. The goal is to prove that ∀δ > 0, ∃K > 0, T > 0, such that ∀n > N, t > T , ‖πtn−pd‖TV< δ.
According to the �rst assumption, ∃N > 0, such that ∀n > N , ‖πbn − pd‖TV< ε.
Therefore, ∀n > K = max(N,M), ∀δ > 0, ∃T = b+ max(0, dlogρ δ− logρ εe) + 1, such that

∀t > T ,

‖πtn − pd‖TV

=‖πbn − pd‖TV

t−1∏
i=b

‖πi+1
n − pd‖TV
‖πin − pd‖TV

< ερt−b < ερT−b < ε · δ
ε

= δ (B.16)

The �rst inequality uses the fact that ‖πbn − pd‖TV< ε (from Assumption 1), and ‖πt+1
n −

pd‖TV/‖πtn − pd‖TV< ρ (from Assumption 2). The second inequality is true because ρ < 1 by
Assumption 2. The third inequality uses the fact that T − b > dlogρ δ − logρ εe (from de�nition of
T ), so ρT−b < δ/ε. Hence the sequence {πn}∞n=1 converges to pd in total variation.

Moreover, convergence in total variation distance is equivalent to convergence in Jensen-
Shannon (JS) divergence[ACB17], which is what GANs attempt to minimize [GPAM+14]. This



APPENDIX B. ADDITIONAL EXPERIMENTAL DETAILS & RESULTS 227

motivates the use of GANs to achieve the two conditions in Proposition 8. This suggests a new
optimization criterion, where we look for a θ that satis�es both conditions in Proposition 8, which
translates to Equation 9.3.

B.7.3 Details on the Pairwise Discriminator

Similar to the settings in MGAN objective, we consider two chains to obtain samples:

• Starting from a data point x, sample z1 in B steps.

• Starting from some noise z, sample z2 in B steps; and from z2 sample z3 in M steps.

For the “generated” (fake) data, we use two type of pairs (x, z1), and (z2, z3). This is illustrated
in Figure B.20. We assume equal weights between the two types of pairs.

no gradient gradient

x

z

z1|x

z2|z z2 z3|z2

pair

Figure B.20: Illustration of the generative process for the pairwise discriminator. We block the
gradient for z2 to further parallelize the process and improve training speed.
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B.7.4 Additional Experimental Details

Architectures for Generative Model for Images

Code is available at https://github.com/ermongroup/markov-chain-gan.
Let ‘fc n, (activation)’ denote a fully connected layer with n neurons. Let ‘conv2d n, k, s,

(activation)’ denote a convolutional layer with n �lters of size k and stride s. Let ‘deconv2d n, k, s,
(activation)’ denote a transposed convolutional layer with n �lters of size k and stride s.

We use the following model to generate Figure 9.1 (MNIST).

encoder decoder discriminator

fc 600, lrelu fc 600, lrelu conv2d 64, 4× 4, 2× 2, relu
fc 100, linear fc 784, sigmoid conv2d 128, 4× 4, 2× 2, lrelu

fc 600, lrelu
fc 1, linear

We use the following model to generate Figure 9.3 (CelebA, top)

encoder decoder discriminator

conv2d 64, 4× 4, 2× 2, lrelu fc 16× 16× 64, lrelu conv2d 64, 4× 4, 2× 2, relu
fc 200, linear deconv2d 3, 4× 4, 2× 2, tanh conv2d 128, 4× 4, 2× 2, lrelu

conv2d 256, 4× 4, 2× 2, lrelu
fc 1, linear

For the bottom �gure in Figure 9.3, we add a residual connection such that the input to the
second layer of the decoder is the sum of the outputs from the �rst layers of the decoder and
encoder (both have shape 16× 16× 64); we add a highway connection from input image to the
output of the decoder:

x̄ = αx+ (1− α)x̂

where x̄ is the output of the function, x̂ is the output of the decoder, andα is an additional transposed
convolutional output layer with sigmoid activation that has the same dimension as x̂.

We use the following model to generate Figure 9.5 (CelebA, pairwise):

9_a_nice_mc:https://github.com/ermongroup/markov-chain-gan
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encoder decoder discriminator

conv2d 64, 4× 4, 2× 2, lrelu fc 1024, relu conv2d 64, 4× 4, 2× 2, relu
conv2d 64, 4× 4, 2× 2 fc 8× 8× 128, relu conv2d 128, 4× 4, 2× 2, lrelu

fc 1024, lrelu deconv2d 64, 4× 4, 2× 2, relu conv2d 256, 4× 4, 2× 2, lrelu
fc 200 linear deconv2d 3, 4× 4, 2× 2, tanh fc 1, linear

For the pairwise discriminator, we double the number of �lters in each convolutional layer.
According to [GAA+17], we only use batch normalization in the generator for all experiments.

Analytic Forms of Energy Functions

Let f(x|µ, σ) denote the log pdf of N (µ, σ2).
The analytic form of U(x) for ring is:

U(x) =
(
√
x2

1 + x2
2 − 2)2

0.32
(B.17)

The analytic form of U(x) for mog2 is:

U(x) = f(x|µ1, σ1) + f(x|µ2, σ2)− log 2 (B.18)

where µ1 = [5, 0], µ2 = [−5, 0], σ1 = σ2 = [0.5, 0.5].
The analytic form of U(x) for mog6 is:

U(x) =
6∑
i=1

f(x|µi, σi)− log 6 (B.19)

where µi = [sin iπ
3 , cos iπ3 ] and σi = [0.5, 0.5].

The analytic form of U(x) for ring5 is:

U(x) = min(u1, u2, u3, u4, u5) (B.20)

where ui = (
√
x2

1 + x2
2 − i)2/0.04.
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Benchmarking Running Time

Since the runtime results depends on the type of machine, language, and low-level optimizations,
we try to make a fair comparison between HMC and A-NICE-MC on TensorFlow [AAB+16].

Our code is written and executed in TensorFlow 1.0. Due to the optimization of the computation
graphs in TensorFlow, the wall-clock time does not seem to be exactly linear in some cases, even
when we force the program to use only 1 thread on the CPU. The wall-clock time is a�ected by 2
aspects, batch size and number of steps. We �nd that the wall-clock time is relatively linear with
respect to the number of steps, and not exactly linear with respect to the batch size.

Given a �xed number of steps, the wall-clock time is constant when the batch size is lower
than a threshold, and then increases approximately linearly. To perform speed benchmarking on
the methods, we select the batch size to be the value around the threshold, in order to prevent
signi�cant under-estimates of the e�ciency.

We found that the graph is much more optimized if the batch size is determined before execution.
Therefore, we perform all the benchmarks on the optimized graph where we specify a batch size
prior to running the graph. For the energy functions, we use a batch size of 2000; for Bayesian
logistic regression we use a batch size of 64.

Hyperparameters for the Energy Function Experiments

For all the experiments, we use same hyperparameters for both A-NICE-MC and HMC. We sample
x0 ∼ N (0, I) and run the chain for 1000 burn-in steps and evaluate the samples from the next
1000 steps. For HMC we use 40 leapfrog steps and a step size of 0.1. For A-NICE-MC we consider
fθ(x, v) with three coupling layers, which updates v, x and v respectively. The motivation behind
this particular architecture is to ensure that both x and v could a�ect the updates to x′ and v′.
In each coupling layer, we select the function m(·) to be a one-layer NN with 400 neurons. The
discriminator is a three layer MLP with 400 neurons each. Similar to the settings in Section 9.3.1,
we use the gradient penalty method in [GAA+17] to train our model. For bootstrapping, we �rst
collect samples by running the NICE proposal over the untrained fθ , and for every 500 iterations
we replace half of the samples with samples from the latest trained model. All the models are
trained with AdaM [KB14] for 20000 iterations with B = 4, M = 2, batch size of 32 and learning
rate of 10−4.
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Hyperparameters for the Bayesian Logistic Regression Experiments

For HMC we tuned the step size parameter to achieve the best ESS possible on each dataset, which
is 0.005 for german, 0.01 for heart and 0.0115 for australian (HMC performance on australian is
extremely sensitive to the step size). For A-NICE-MC we consider f(x, v) with three coupling
layers, which updates v, x and v respectively; we set v to have 50 dimensions in all the experiments.
m(·) is a one-layer NN with 400 neurons for the top and bottom coupling layer, and a two-layer
NN with 400 neurons each for the middle layer. The discriminator is a three layer MLP with 800
neurons each. We use the same training and bootstrapping strategy as in Appendix B.7.4. All the
models are trained with AdaM for 20000 iterations with B = 16, M = 2, batch size of 32 and
learning rate of 5× 10−4.

Architecture Details

The following �gure illustrates the architecture details of fθ(x, v) for A-NICE-MC experiments.
We do not use batch normalization (or other normalization techniques), since it slows the execution
of the network and does not provide much ESS improvement.
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sum

sum
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identity
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(a) NICE architecture for energy functions.

fc 400, relu

fc 400, relu

fc 400, relu

sum

sum

sum

v ∼ N (0, I)x

v′x′

identity

identity

identity
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(b) NICE architecture for Bayesian logistic regres-
sion.
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B.8 Chapter 9

B.8.1 MAGAIL Algorithm

We include the MAGAIL algorithm as follows:

Algorithm 8 Multi-Agent GAIL (MAGAIL)
Input: Initial parameters of policies, discriminators and value (baseline) estimators θ0, ω0, φ0; expert
trajectories D = {(sj , aj)}Mj=0; batch size B; Markov game as a black box (N,S,A, η, T, r,o, γ).
Output: Learned policies πθ and reward functions Dω .
for u = 0, 1, 2, . . . do

Obtain trajectories of size B from π by the process: s0 ∼ η(s), at ∼ πθu(at|st), st+1 ∼ P (st|at).
Sample state-action pairs from D with batch size B.
Denote state-action pairs from π and D as χ and χE .
for i = 1, . . . , n do

Update ωi to increase the objective

Eχ[logDωi
(s, ai)] + EχE

[log(1−Dωi
(s, ai))]

end for
for i = 1, . . . , n do

Compute value estimate V ? and advantage estimate Ai for (s, a) ∈ χ.
Update φi to decrease the objective

Eχ[(Vφ(s, a−i)− V ?(s, a−i))2]

Update θi by policy gradient with small step sizes:

Eχ[∇θiπθi(ai|oi)Ai(s, a)]

end for
end for

B.8.2 Experiment Details

Hyperparameters

For the particle environment, we use two layer MLPs with 128 cells in each layer, for the policy
generator network, value network and the discriminator. We use a batch size of 1000. The policy is
trained using K-FAC optimizer [MG15] with learning rate of 0.1. All other parameters for K-FAC
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Table B.7: Performance in cooperative navigation.

# Expert Episodes 100 200 300 400
Expert -13.50 ± 6.3

Random -128.13 ± 32.1
Behavior Cloning -56.82 ± 18.9 -43.10 ± 16.0 -35.66 ± 15.2 -25.83 ± 12.7

Centralized -46.66 ± 20.8 -23.10 ± 12.4 -21.53 ± 12.9 -15.30 ± 7.0
Decentralized -50.00 ± 18.6 -25.61 ± 12.3 -24.10 ± 13.3 -15.55 ± 6.5

GAIL -55.01 ± 17.7 -39.21 ± 16.5 -29.89 ± 13.5 -18.76 ± 12.1

Table B.8: Performance in cooperative communication.

# Expert Episodes 100 200 300 400
Expert -6.22 ± 4.5

Random -62.49 ± 28.7
Behavior Cloning -21.25 ± 10.6 -13.25 ± 7.4 -11.37 ± 5.9 -10.00 ± 5.36

Centralized -15.65 ± 10.0 -7.11 ± 4.8 -7.11 ± 4.8 -7.09 ± 4.8
Decentralized -18.68 ± 10.4 -8.06 ± 5.3 -8.16 ± 5.5 -7.34 ± 4.9

GAIL -20.28 ± 10.1 -11.06 ± 7.8 -10.51 ± 6.6 -9.44 ± 5.7

optimizer are the same in [WMG+17].
For the cooperative control task, we use two layer MLPs with 64 cells in each layer for all the

networks. We use a batch size of 2048, and learning rate of 0.03. We obtain expert trajectories by
training the expert with MACK and sampling demonstrations from the same environment. Hence,
the expert’s demonstrations are imperfect (or even �awed) in the environment that we test on.

Detailed Results

We use the particle environment introduced in [LWT+17] and the multi-agent control environ-
ment [KGE17] for experiments. We list the exact performance in Tables B.7, B.8 for cooperative
tasks, and Table B.9 and competitive tasks. The means and standard deviations are computed over
100 episodes. The policies in the cooperative tasks are trained with varying number of expert
demonstrations. The policies in the competitive tasks are trained with on a dataset with 100 expert
trajectories.

The environment for each episode is drastically di�erent (e.g. location of landmarks are
randomly sampled), which leads to the seemingly high standrad deviation across episodes.
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Table B.9: Performance in competitive tasks.

Task Agent Policy Adversary Policy Agent Reward

Predator-Prey

Behavior Cloning

Behavior Cloning -93.20 ± 63.7
GAIL -93.71 ± 64.2

Centralized -93.75 ± 61.9
Decentralized -95.22 ± 49.7

Zero-Sum -95.48 ± 50.4
GAIL

Behavior Cloning

-90.55 ± 63.7
Centralized -91.36 ± 58.7

Decentralized -85.00 ± 42.3
Zero-Sum -89.4 ± 48.2

Keep-Away

Behavior Cloning

Behavior Cloning 24.22 ± 21.1
GAIL 24.04 ± 18.2

Centralized 23.28 ± 20.6
Decentralized 23.56 ± 19.9

Zero-Sum 23.19 ± 19.9
GAIL

Behavior Cloning

26.22 ± 19.1
Centralized 26.61 ± 20.0

Decentralized 28.73 ± 18.3
Zero-Sum 27.80 ± 19.2
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Figure B.22: Sample complexity of multi-agent GAIL methods under cooperative tasks. Performance
of experts is normalized to one, and performance of behavior cloning is normalized to zero. The
standard deviation is computed with respect to episodes, and is noisy due to randomness in the
environment.
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Video Demonstrations

We show certain trajectories generated by our methods. The vidoes are here: videos3.
For the particle case:

Navigation-BC-Agents.gif Agents trained by behavior cloning in the navigation task.

Navigation-GAIL-Agents.gif Agents trained by proposed framework in the navigation task.

Predator-Prey-BC-Agent-BC-Adversary.gif Agent (green) trained by behavior cloning play
against adversaries (red) trained by behavior cloning.

Predator-Prey-GAIL-Agent-BC-Adversary.gif Agent (green) trained by proposed framework
play against adversaries (red) trained by behavior cloning.

For the cooperative control case:

Multi-Walker-Expert.mp4 Expert demonstrations in the “easy” environment.

Multi-Walker-GAIL.mp4 Centralized GAIL trained on the “hard” environment.

Multi-Walker-BC.mp4 BC trained on the “hard” environment.

Interestingly, the failure modes for the agents in “hard” environment is mostly having the plank
fall o� or bounce o�, since by decreasing the weight of the plank will decrease its friction force and
increase its acceleration.

3https://drive.google.com/open?id=1Oz4ezMaKiIsPUKtCEOb6YoHJ9jLk6zbj

10_magail:https://drive.google.com/open?id=1Oz4ezMaKiIsPUKtCEOb6YoHJ9jLk6zbj
10_magail:https://drive.google.com/open?id=1Oz4ezMaKiIsPUKtCEOb6YoHJ9jLk6zbj


Appendix C

Code and Data

The following links provide open-source implementations and custom datasets (if applicable) for
the various chapters presented in this dissertation.

• Chapter 2
https://github.com/ermongroup/smile-mi-estimator

• Chapter 3
https://github.com/jiamings/ml-cpc

• Chapter 4
https://github.com/jiamings/lag-fairness

• Chapter 5
https://github.com/ermongroup/f-wgan

• Chapter 6
https://github.com/ermongroup/NDA

• Chapter 7
https://github.com/jiamings/d2c

• Chapter 8
https://github.com/ermongroup/a-nice-mc

• Chapter 9
https://github.com/ermongroup/multiagent-gail

https://github.com/ermongroup/MA-AIRL
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