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Diffusion models as powerful image generators

A highly detailed digital painting of
a portal in a mystic forest with
many beautiful trees. A person is
standing in front of the portal.

A highly detailed zoomed-in digital
painting of a cat dressed as a
witch wearing a wizard hat in a

haunted house, artstation.

An image of a beautiful landscape
of an ocean. There is a huge rock
in the middle of the ocean. There
IS a mountain in the background.

Sun is setting.

[Balaji et al., 2022] eDiff-I: Text-to-lImage Diffusion Models with an Ensemble of Experts (NVIDIA)




A photo of a golden retriever puppy wearing a green shirt.
The shirt has text that says, "NVIDIA rocks”.
Background office. 4k dslr.

Stable Diffusion DALL-E 2 eDiff-I

[Balaji et al., 2022] eDiff-I: Text-to-lImage Diffusion Models with an Ensemble of Experts (NVIDIA)



Style Reference

A photo of a duckling
wearing a medieval

soldier helmet and
riding a skateboard. L

[Balaji et al., 2022] eDiff-I: Text-to-lImage Diffusion Models with an Ensemble of Experts (NVIDIA)



aurora

a half frozen lake boat

A digital painting of a half-frozen lake near mountains under a full
moon and aurora. A boat is in the middle of the lake. Highly detailed.

[Balaji et al., 2022] eDiff-I: Text-to-lImage Diffusion Models with an Ensemble of Experts (NVIDIA)



PR Se

Vincent van Gogh Egyptian tomb hieroglyphics Abstract cubism

[Balaji et al., 2022] eDiff-I: Text-to-lImage Diffusion Models with an Ensemble of Experts (NVIDIA)

“A {X} photo /
painting of a
penguin
working as a
fruit vendor in
a tropical
village



Conditional diffusion model for many image processing problems

1024 X 1024

256 X 256

64 X 64

4X 4x

Super-resolution

https://iterative-refinement.github.io



Conditional diffusion model for many image processing problems

Reference

Reference
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Inpainting JPEG (QF = 5) Restoration

https://iterative-refinement.github.io/palette/



Conditional diffusion model for many image processing problems

SAPHNetgmmi - ll Deblur GAN=V2Ji

QOurs=-SA" = | RETGEEE

i9 1m
M £y

Blind deblurring

[CVPR 2022] Deblurring via Stochastic Refinement



Why not use a conditional diffusion model everywhere?

The base model was trained using 256
NVIDIA A100 GPUs, while the two super-resolution mod-
els were trained with 128 NVIDIA A100 GPUs each.

Training is expensive (Source: eDiff-I)

JPEG Restoration JPEG + Super-resolution JPEG + Super-res + Inpainting

Many conditioning tasks



Super-resolution with Plug-and-Play

Goal: denoise and super-resolve an image

Likelihood Posterior



Inpainting with Plug-and-Play

Goal: recover the masked region of an image

Likelihood — Posterior



Inverse problems with Plug-and-Play

Generative model:
e.g., VAE, GAN, Diffusion

Prior X Likelihood ——- Posterior



Generative model:
e.g., VAE, GAN, Diffusion

How can we use generic diffusion models for
efficiently solving general inverse problems?

Prior X Likelihood ——- Posterior



Diffusion Models for Inverse Problems
Example 1. JPEG Restoration + Inpainting

[1GDM Output



Diffusion Models for Inverse Problems
Example 2. JPEG Restoration + Super-resolution

[1GDM Output



Diffusion Models for Inverse Problems
Example 3. JPEG Restoration + Super-resolution + Inpainting

Input [1GDM Output



Diffusion Models for Inverse Problems
Example 4. Medical Imaging Problems

Fully-Sampled MVUE Langevin (Ours)

=3

In-distribution, R

SSIM: 0.72  PSNR: 21.86dB SSIM: 0.75  PSNR: 23.10dB SSIM: 0.85 PSNR: 30.33dB

[NeurlPS 2021] Robust Compressed Sensing MRI with Deep Generative Priors



Roadmap

. Overview of DDIM

ll. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

lll. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

V. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to
domain-specific diffusion models.



Overview of (denoising) diffusion models

Learning with regression:

lo —  D(z00) 3
N——

“predict g from a”

Noisy image Clean image
predict
«— i
+ noise

Ty = g + O4€
[Gaussian noise]

20



Overview of (denoising) diffusion models

Learning with regression: ||£Co — D(-?Ut; Ut) H%
N————

“predict g from a.”

predict

1l

[Small noise]

Jbip

+ noise

predict

[Mid noise]

Jbip

+ noise

predict

1l

[High noise]

Jbip

+ noise

21



Overview of (denoising) diffusion models

Learning with regression: H:Bo — D(Cﬂt; Ut) ||%
N——

(14 . 79
. . predict &g from x;
Forward diffusion process:

Xg —+ X1 >+ —7 LT

[More and more noisy]

[Gaussian noise] [Diffusion process]

[Timestep tied to noise levels]



Overview of (denoising) diffusion models
Learning with regression: H:BO — D(zct; O't) H%

. . “predict g from ax;”
Forward diffusion process: P v !

Xo —> X1 —> - —7 LT

[More and more noisy]

Reverse diffusion process:

X — -1 —7 *++ —> L1 — L

| predict + noise

q#

[Gaussian noise] [Gradual denoising process] [Sample]



Overview of (denoising) diffusion models

Reverse diffusion process:

Xy — 1 —7 - —7> L1 —7 Ly

predict + noise

ﬁ#

[Gaussian noise] [Gradual denoising process] [Sample]

Connections to denoising score matching and score SDEs

“Denoise”

_O-tvxt logpt (Xt) — Xt O-(th O-t) pT(XT) pO(XO
t

“Score” | —

4

dx = — O'tO'tv 1ngt(X)dt — Bto-t V logpt(x dt + 26tatdwt

v

Probablhstlc ODE Langevin process




Denoising Diffusion Implicit Models
DDIM: A first-order solver for the SDE

If a method works for general distributions, then it should work if dist. only has 1 datapoint.

Going to explain the idea for just 1 datapoint, but it also works for general distributions
The general case is related to with Variational inference, Fokker-Planck Equations, Schrodinger bridge ...

okay | believeryou

[ICLR 2021] Denoising Diffusion Implicit Models



Denoising Diffusion Implicit Models
DDIM: A first-order solver for the SDE

+ o041 X

Signal Noise

[ICLR 2021] Denoising Diffusion Implicit Models



Denoising Diffusion Implicit Models
DDIM: A first-order solver for the SDE

Xt Denoise

—p  Diffusion Model

MMSE is always xg
Distribution of 1 datapoint.

Signal Noise

Decompose “signal” and “noise” linearly.

N(0,a%) + N(0,0%) = N(0,a* + b?)

Summing iid. Gaussians gives a Gaussian.

[ICLR 2021] Denoising Diffusion Implicit Models



Denoising Diffusion Implicit Models ~ (* ssienrose ~

DDIM: A first-order solver for the SDE Omit ’Fhese in
later figures!

o

Xt Denoise Xt—1

J

Linear combination
>

—  Diffusion Model

>

Linearly combine input, denoise, standard Gaussian noise to get output.

Axt + B)A{t + Ce — Xt—1

Condition 1: noise coefficient (Ag;)? +C? =02,
There is 1 degree of freedom!

Condition 2: signal coefficient A4 B =1 | (amount of stochasticity in the process)

\\

[ICLR 2021] Denoising Diffusion Implicit Models




Denoising Diffusion Implicit Models
DDIM: A first-order solver for the SDE

The ODE solver (C = 0) is quite efficient, often gives good results in 20 - 100 iterations!

A first-order exponential integrator in the ODE case.

DDIM (10, 20, 50, 100 iterations)

[ICLR 2021] Denoising Diffusion Implicit Models



Roadmap

. Overview of DDIM

ll. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

lll. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

V. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to
domain-specific diffusion models.



Denoising Diffusion Restoration Models
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Bahjat Kawar Michael Elad Stefano Ermon Jiaming Song



(Linear) Inverse Problems [Degradation]

Given noisy observation vy, recover x. y = HX() + 7
[Noisy observation] [Noise, Gaussian
stddev = Oy]

Super-resolution: observed low resolution image.

Inpainting: observed masked image.

Deblurring: observed blurred image.




Denoising Diffusion Restoration Models

Super-
resolution

Inpainting Deblurring

Observations
(Inputs)
y

Outputs from
our method

X0

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 1: Noiseless inpainting y = HXO 4+ 7

[Zero noise]

Denoise Updated denoise result
4 Linear combination
Diffusion Mode|  re—) >?

Linear combination

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 1: Noiseless inpainting y = HXO 4+ 7

[Zero noise]

Denoise Updated denoise result

Linear combination

"%

4

Linear combination

Diffusion Mode|  re——)

[ICLR 2021] Denoising Diffusion Implicit Models
[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 1: Noiseless inpainting y = HXO 4+ 7

[Zero noise]

%, = H'y + (I - H'H)%,

Updated denoise result

Linear combination
R

[Axt + Bx; + Ce — xt_l]

Linear combination

[ICLR 2021] Denoising Diffusion Implicit Models
[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models

Case 1: Noiseless inpainting

[H = Diagonal with 0 and 1’s]

y = Hxy+ z

[Zero noise]

Linear Combination

D

[ICLR 2021] Denoising Diffusion Implicit Models
[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 2: Noisy inpainting y = HXO 4+ 7z

Oy < O¢ [Noise, Gaussian
stddev = Oy]

A

When noise level is large

Xt Denoise

Linear Combination
S [V | _ with noise considered
Xy

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 2: Noisy inpainting y = HXO 4+ 7z
Oy > 0t—1 [Noise, Gaussian
x stddev = Oy]
\ L » We don’t need
When noise level is small too noisy observations!

Linear Combination
with noise considered

D

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 2: Noisy inpainting y = HXO 4+ 7z
Oy > O0¢—1 Observation is already too noisy, just run DDIM. [Noise, Gaussian
stddev = Oy]

Oy < O¢t—1 We can perform linear projection on “noisy denoised” samples.

Xt Denoise Add some noise again
. /3"ct = H'y + (I - HTH)f;

» Signal coefficient =1

Noise coefficient = Oy,

)

Xt + Oy€ Yy

Noisy observations

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1's]

Case 2: Noisy inpainting y = HXO 4+ 7z

Oy S O¢t—1 We can perform linear projection on “noisy denoised” samples. . _
[Noise, Gaussian

stddev = Oy]

%, =H'y+ (I - H H)x%, Xi—1

Linear combination
"%
[A’Xt + B'x; +C'e — Xt—lJ

Diffusion Model
+ noise

Condition 1: noise coefficient (A’c,)? + (B'oy)? + (C')? = 02,
Condition 2: signal coefficient A"+ B’ =1

o J

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models [H = Diagonal with 0 and 1]

Case 2: Noisy inpainting y = HX() 4+ 7z
Oy > O0¢—1 Observation is already too noisy, just run DDIM. [Noise, Gaussian
stddev = Oy]

[Axt + Bx; + Ce — X4 J

Oy < 0¢t—1 Wecan perform linear projection on “noisy denoised” samples.
%, = H'y+ (I - H H)%,

{A,Xt + B’it + OIG — Xt_lJ

[ 1+ 1 = 2 degrees of freedom! In the paper, these are 7] and 7)p, respectively.

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Denoising Diffusion Restoration Models

Most general case: any linear inverse problem y = HXO —+ Z

H=UxXV"

H is “diagonal” with respect to its spectral space

U » \Val

k xk kxn nxn

U'y=%2(V'x))+U'z

DDRM: run “denoising and inpainting”, but in spectral space

(handle noisy cases 0y > 0;—1 for each dimension)

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Results: compare against other DL-based methods

DDRM (20)

- o

X
4

SNIPS RED DGP

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Results: compare against other DL-based methods

4x super-res (noiseless) v PSNR 1 KID | NFEs |
DGP 23.06 21.22 1500
RED 26.08 53.55 100
SNIPS 17.58 35.17 1000
Ours — DDRM 26.55 7.22 20
Deblurring (noisy) v PSNR 1 KID | NFEs |
DGP 21.20 34.02 1500
RED 14.69 121.82 500
SNIPS 16.37 77.96 1000
DDRM 25.45 15.24 20

DDRM performs well within 20 Neural Function Evaluations (NFEs)!

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Qualitative Results

”
EE

(b) Deblurring (Noisy with oy = 0.1)

l.or!m I_psum

d te
et dolore

minim ve

ol

(¢) Inpainting (Noisy with oy = 0.1)

Noiseless Noisy with oy, = 0.1

(a) Super-resolution

(d) Colorization (Noisy with oy = 0.1)

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Applicable to other domains as well!

Astronomy Speech

Strong-Lensing Source Reconstruction with A VERSATILE DIFFUSION-BASED GENERATIVE REFINER
Denoising Diffusion Restoration Models FOR SPEECH ENHANCEMENT
Ryosuke Sawata Naoki Murata Yithta Takida Toshimitsu Uesaka
Gsowte e rcoisbiucion  Amcfisionancin | "Iomlormemn,  redwotmen,  resdunof mean Takashi Shibuya Shusuke Takahashi Yuki Mitsufuji

Sony Group Corporation, Tokyo, Japan

UNSUPERVISED VOCAL DEREVERBERATION
WITH DIFFUSION-BASED GENERATIVE MODELS

Koichi Saito Naoki Murata Toshimitsu Uesaka Chieh-Hsin Lai
Figure 1: Top: from left to right, the mock observation, y (with a medium noise level), the true ] L . . . e

source, x (an unconstrained sample from AstroDDPM), the mean and standard deviation of 100 Yuhta Takida Takao Fukui Yuki M”ﬂ{ﬁ"ﬂ

posterior samples from DDRM, x ; ~ pe(Xg |y), and the residual of the mean with respect to the

true source and with respect to the observation in the image plane; finally, a histogram of the latter - - .

compared to a Gaussian. Bottom: each column is a random posterior sample (top row), which is SDH}" (JI'D[]]J LDI']JDI'HUDH, TD]{}-’G.. .]E].[Jﬂ]l

then lensed to produce the respective noiseless image Hxg ; (middle row). Shown (bottom row)

are also the residuals between Hx( ; and the observation. In residual plots, negative values in one

channel are shown as positive values in the other two (red <+ cyan, green <> magenta, blue < yellow),

considering complementary colors as “negative”.



Roadmap

. Overview of DDIM

ll. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

lll. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

V. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to
domain-specific diffusion models.



PhysDiff: Guided Human Motion Diffusion Model

¥
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Ye Yuan Jiaming Song Umar Igbal Arash Vahdat Jan Kautz



A projection step within DDRM...

Can we extend the projection idea to
other non-linear problems?

Projection

/it —H'y + (I - HTH)f‘c) N
Updated denoise result \

~N
N

Hyperplane satisfying
J y = Hx




Idea behind PhysDiff

Physics-Guided Motion Diffusion

H Policy Steps

—hél:H —

—rh;'igl:H ;i!!!!

| I

Physics-Based xclH
Motion Projection = ™

(2

Condition c: “A person slowly walks forward.”

Project non-physically-plausible motions to physically-plausible ones!



Overview of PhysDiff

C

Physics-Guided
Motion Diffusion

Condition c: “A person slowly walks forward.”

. 1:H
Noise

(L2

|

C

Physics-Guided
Motion Diffusion

‘

Physics-Guided
Motion Diffusion

J1j;

T;

Physics-Guided Motion Diffusion

_h“’l:H_.

H Policy Steps

Physics-Based
Motion Projection

T

~1:H

4

Generated Motion z{'

>

Condition c: “A person slowly walks forward.”




Roadmap

. Overview of DDIM

ll. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

lll. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

V. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to
domain-specific diffusion models.



Pseudoinverse-Guided Diffusion Models for Inverse Problems

Jiaming Song Arash Vahdat Morteza Mardani Jan Kautz



Limitations of DDRM

1. Only supports linear measurements.

U 3 \val : ..
Exk kxFk ks n Linear Combination

= with noise considered
= [ 5 o

2. Works poorly for very sparse measurements.

“Ground truth” Input Output

Problem: update only affects a few pixels!

[NeurlIPS 2022] Denoising Diffusion Restoration Models



Challenges in plug-and-play style inverse problems

Solution: backprop through diffusion model, so update affects all pixels!

Vx, logpt(xt|Y) = Vy, log pt(Xt) + Vy, logpt(y|xt)

Conditional score Prior diffusion model This is not known!

Graphical model is a Markov chain:

Data
y < Xg — X¢

Observation Add Gaussian noise

pt(y\Xt)Z/ p(Xo|X¢)p(y|x0)dxo is “intractable” even if we have p(¥|xo)
X0



Guidance methods for inverse problems

Solution: backprop through diffusion model, so update affects all pixels!

Vx, logpt(xtb’) = Vx, logpt(xt) + Vi, logpt()"xt)

“Score” Prior diffusion model This is not known!

A

We approximate this with Pseudoinverse Guidance

[NeurlIPS 2021] Diffusion Models Beat GANs on Image Synthesis



Pseudoinverse Guidance

Given input (e.g., JPEG encoding), how to recover with diffusion models?

JPEG is not differentiable!

JPEG Huffman coding

JPEG Decode ['1GDM Output



Pseudoinverse Guidance

We use a property of pseudoinverse of matrices: I{I{Jr H=—H

JPEG Encode

Encode

JPEG decode is “pseudoinverse” of JPEG encode!

[NeurlPS 2022 Workshop] JPEG Artifact Correction using Denoising Diffusion Restoration Models



Pseudoinverse Guidance: Step by step

Step 1: Diffusion model makes a prediction that is “denoised”.

Denoise

— Diffusion Model

The diffusion model is generic and not problem-dependent!



Pseudoinverse Guidance: Step by step

Step 2: Degradation & its “pseudoinverse” are applied to denoised prediction

Denoise

—— Diffusion Model - .

JPEG Encode

JPEG Decode



Pseudoinverse Guidance: Step by step

Step 3: Compute difference between the given input.

Denoise

—  Diffusion Model

Input
(JPEG-degraded)

Compute Difference

H'y — H' Hx,



Pseudoinverse Guidance: Step by step

Step 4: Leverage the difference to guide the prediction closer to input.

Denoise

—  Diffusion Model

///Input
(JPEG-degraded)

Vector-Jacobian
Product

\ Compute Difference J




Pseudoinverse Guidance: Step by step

Step 5: Repeat for lower noise levels (high noise).

Denoise

—  Diffusion Model

Input JPEG \
(JPEG-degraded) | Vector-Jacobian

Product 8 E
-&)"

\ Compute Difference J




Pseudoinverse Guidance: Step by step

Step 5: Repeat for lower noise levels (mid noise).

Denoise

Vector-Jacobian
Product

\ Compute Difference /




Pseudoinverse Guidance: Step by step

Step 5: Repeat for lower noise levels (low noise).

Denoise Final output

Vector-Jacobian
Product

\ Compute Difference J




MGDM in practice (super-resolution)

Using a generic diffusion model, [ 1GDM is competitive against specialized models!

Low-res Input ADM-U Output [1GDM Output Reference



MGDM in practice (super-resolution)

Using a generic diffusion model, [ 1GDM is competitive against specialized models!

Low-res Input ADM-U Output [1GDM Output Reference



[MGDM in practice (JPEG restoration)

Using a generic diffusion model, [ 1GDM is competitive against specialized models!

2 ket

JPEG Input Palette Output '1GDM Output Reference



MGDM in practice (Inpainting)

Using a generic diffusion model, [TGDM is competitive against specialized models!

Masked Input [1GDM Output 1 [1GDM Output 2 [1GDM QOutput 3



seudoinverse Guidance

Vx, log p:(x¢|y) = Vx, log p:(x:) + Vx, log p:(y|x¢)

“Score” Prior diffusion model This is not known!

Idea: find good approximations to p:(y|x;)

pe (¥ |%¢) :/ p(xo|x¢)p(y|xX0)dxo

Approximate with Gaussian Known from linear relationship
Pt (XO ‘Xt) ~ N(ﬁt, ’r'tQI) [Degradation]
)A(t — D(Xt;O't) y — HXO _I_ //

Mean = denoised result [Noisy observation] [Noise]

Standard deviation = hyperparameter



seudoinverse Guidance

pe(y|x:) ~ N(H}A(t, ’I“?HHT + 032,1) is approximately Gaussian!

Case 1: Noise is positive

. ~1 0x T
Vi, log pi(y|x¢) ~ ((y—I—Ix,g)T (erHT +J)2,I) H 8_Xt ) .

L Backprop through diffusion model
Case 2: Noise is zero

~ T OX\T
Vi, log pe(ylxe) =7 * (H'y — HJ'HXt)Ta_xj)

H' =H'"(HH'")™! ismatrix pseudoinverse!

- Vector Jacobian Product (vJp) can be computed by backprop
- Vector does not have to be differentiable



seudoinverse Guidance

Case 2: Noise is zero
_ T OX\ T
Vi, 10gpt(Y‘Xt) ~ Ty 2((HTY — HTHXt)Ta—;)
t

H'=H"(HH'")™! ismatrix pseudoinverse!

Pseudoinverse guidance for case 2:

1. Compute vector H'y — H'H%;

2. Compute vector-Jacobian product with backprop.



seudoinverse Guidance vs. Reconstruction Guidance

Reconstruction guidance [Ho et al., 2022 (Video Diffusion Models)]:

_ . _ T OXe\ T
Vi log pilylxe) = 1 ly = Hl3 =i (H Ty = HTHx) T 5°2)

-
Pseudoinverse guidance changes transpose to pseudoinverse!

9x9 Uniform Blur

Singular values of H'H are O or 1 L
Works well for poorly-conditioned matrices! N

000000000000000000000000000000000000000000000
Singular value index




Pseudoinverse Guidance: Quantitative Results

Super-resolution Inpainting

Filter ~ Method FID| CA* Mask Method FID-10k | CA 1
ADM (cc, Dhariwal & Nichol (2021)) 3.1 73.4% DeepFillv2 (Yu et al., 2019) 18.0 64.3%
DDRM (Kawar et al., 2022a) 148 64.6% Palette (Saharia et al., 2022a) 6.6 69.3%
Fool ESE;‘;‘ (0!-42) o 13481 ziéf Center  DDRM (Kawar et al., 2022a) 24.4 62.1%
[IGDM (((c(; ()?::31 i 36 T20% HGDM (Qurs) 7.3 72:6%
— : I[IGDM (noisy, Ours) 9.5 72.2%

SR3 (Saharia et al., 2021) 52 68.3% - -
ADM (cc, Dhariwal & Nichol (2021)) 148  66.7% DeepFillv2 (Yu et al., 2019) 9.4 68.8%
iewbie  DDRM (Kawar et al., 2022a) 213 63.2% Palette (Saharia et al., 2022a) 5.2 72.3%
icubic - 8.6 71.9%

[IGDM (Qurs) 3.6 72 1% Freeform _ DDRM (Kawar et al.. 2022a
DDRM (¢ Kawar et al (2( C % IIGDM (Ours)
IIGDM (cc, Ours) 3.2 75.1%

I[IGDM (noisy, Ours)

Comparable with Palette and ADM-U,
state-of-the-art diffusion models specifically trained on the tasks.




seudoinverse Guidance: Quantitative Results

JPEG Restoration

QF Method FID-10k | CA 7
Regression (Saharia et al., 2022a) 29.0 52.8%
5 Palette (Saharia et al., 2022a) 8.3 64.2%
LIGDM (Ours) 8.6 64.1%
Regression (Saharia et al., 2022a) 18.0 63.5%
10 Palette (Saharia et al., 2022a) 54 70.7%
1IGDM (Ours) 6.0 71.0%
Regression (Saharia et al., 2022a) 11.5 69.7%
20 Palette (Saharia et al., 2022a) 4.3 73.5%
IIGDM (Ours) 4.7 74.4 %

Comparable with Palette and ADM-U,
state-of-the-art diffusion models specifically trained on the tasks.



Combining multiple operators

h(x) =hyohsy...o0hg(x)

down sampling -> JPEG encode -> masking

hi(x) ~ hlo...ohdohl(x)

unmasking -> up sampling -> JPEG decode

[1GDM Output



Prospects and challenges

Efficiency: [1GDM is slower & memory inefficient, due to backpropagation.
Generality: [1GDM is not suitable to problems without a “pseudoinverse”.

Blindness: [1GDM is limited to “non-blind” inverse problems.

Non-linear
(e) Phase retrieval

2 |

Non-linear problems Blind inverse problems
Chung et al., https://arxiv.org/abs/2209.14687 Chung et al., https://arxiv.org/abs/2211.10656

Some efforts on these directions, yet not fast / robust enough!



Summary

Diffusion models can act as efficient priors for inverse problems.

-

N

[NeurlIPS 2022] Diffusion Denoising Restoration Models
- https://github.com/bahjat-kawar/ddrm
- https://ddrm-ml.github.io/

PhysDiff: Physics-Guided Human Motion Diffusion Model
- https://nvlabs.github.io/PhysDiff/

Pseudoinverse-Guided Diffusion Models for Inverse Problems
- Accepted to ICLR 2023
- Draft: https://openreview.net/forum?id=9 gsMABMRKQ

~

J

Thanks!

https://tsong.me


https://github.com/bahjat-kawar/ddrm
https://ddrm-ml.github.io/
https://nvlabs.github.io/PhysDiff/
https://openreview.net/forum?id=9_gsMA8MRKQ
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