Diffusion Models for Inverse Problems

ICMS Workshop on "Interfacing Bayesian statistics, machine learning, applied analysis, and blind and semi-blind imaging inverse problems"

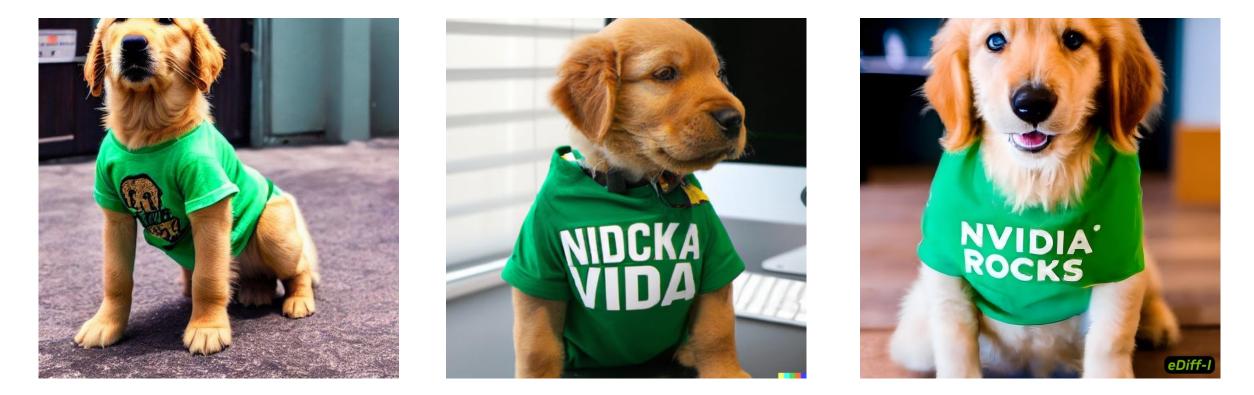
Jiaming Song NVIDIA Research

https://tsong.me

Diffusion models as powerful image generators

A highly detailed digital painting of a portal in a mystic forest with many beautiful trees. A person is standing in front of the portal. A highly detailed zoomed-in digital painting of a cat dressed as a witch wearing a wizard hat in a haunted house, artstation. An image of a beautiful landscape of an ocean. There is a huge rock in the middle of the ocean. There is a mountain in the background. Sun is setting.

A photo of a golden retriever puppy wearing a green shirt. The shirt has text that says, "NVIDIA rocks". Background office. 4k dslr.

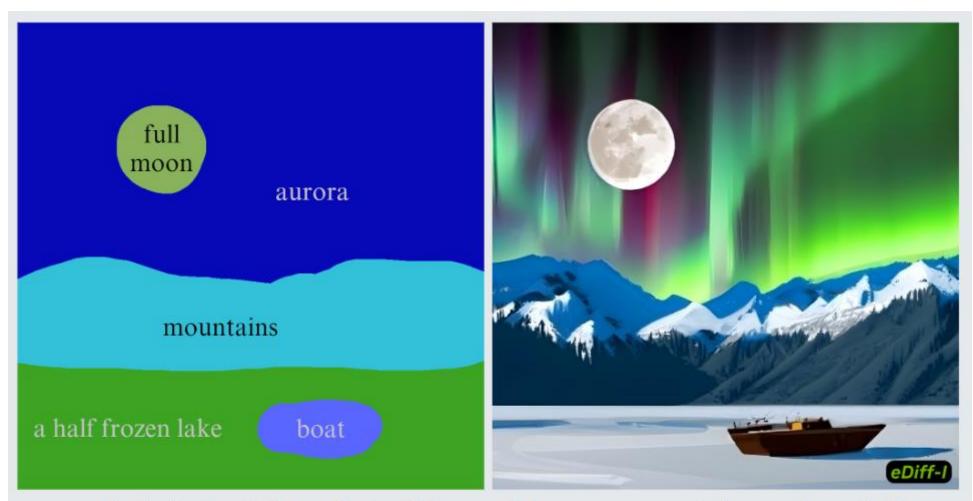


Stable Diffusion

DALL·E 2

Style Reference

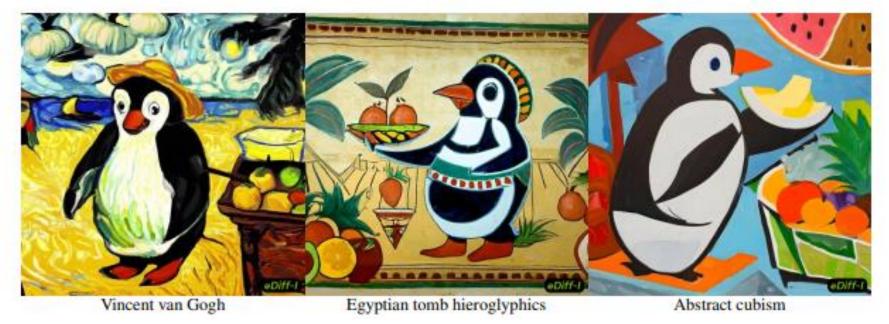
A photo of a duckling wearing a medieval soldier helmet and riding a skateboard.



A digital painting of a half-frozen lake near mountains under a full moon and aurora. A boat is in the middle of the lake. Highly detailed.

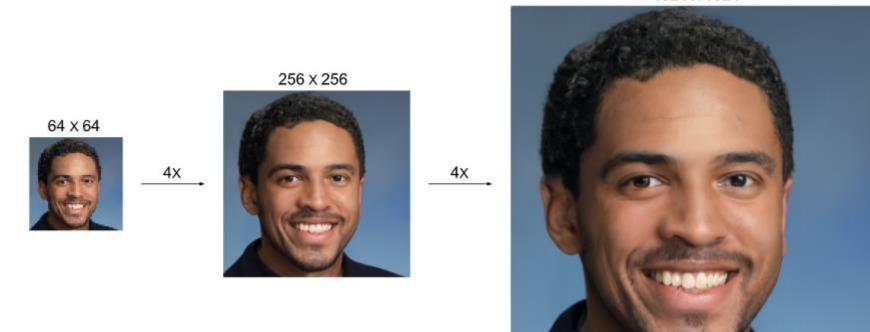
Real

Rembrandt



"A {X} photo / painting of a penguin working as a fruit vendor in a tropical village

Conditional diffusion model for many image processing problems

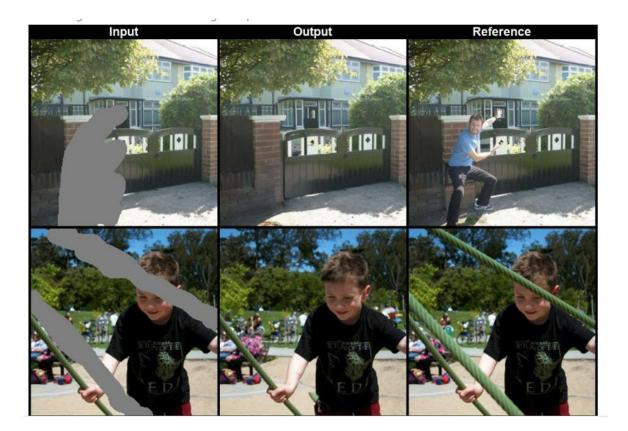


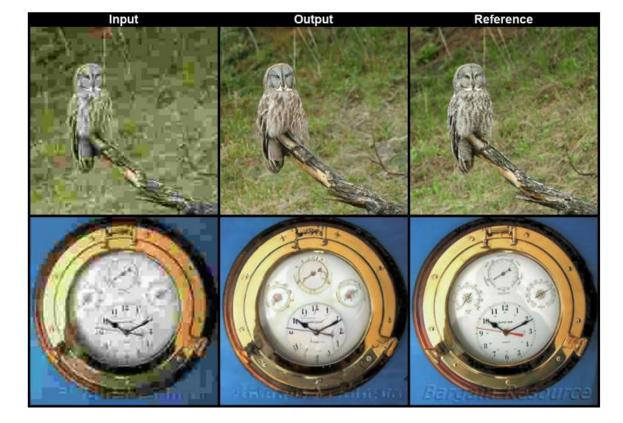
1024 x 1024

Super-resolution

https://iterative-refinement.github.io

Conditional diffusion model for many image processing problems



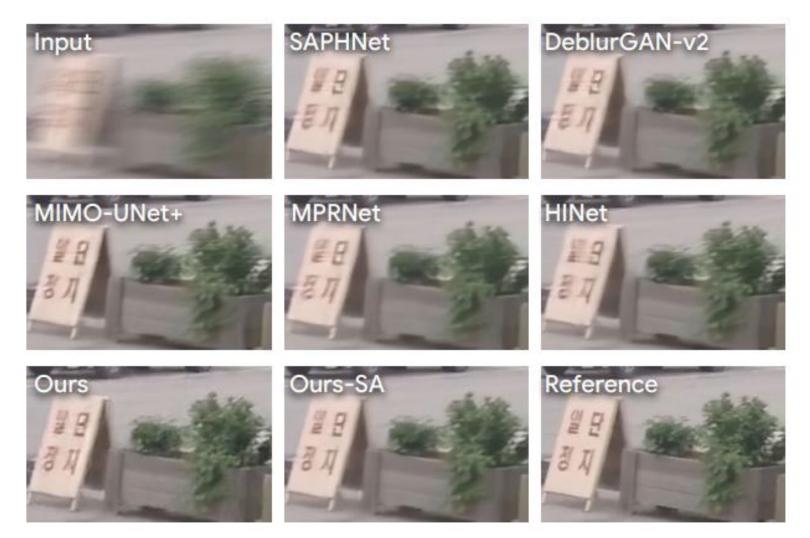


JPEG (QF = 5) Restoration

Inpainting

https://iterative-refinement.github.io/palette/

Conditional diffusion model for many image processing problems



Blind deblurring

[CVPR 2022] Deblurring via Stochastic Refinement

Why not use a conditional diffusion model everywhere?

The base model was trained using 256 NVIDIA A100 GPUs, while the two super-resolution models were trained with 128 NVIDIA A100 GPUs each.

Training is expensive (Source: eDiff-I)

JPEG Restoration

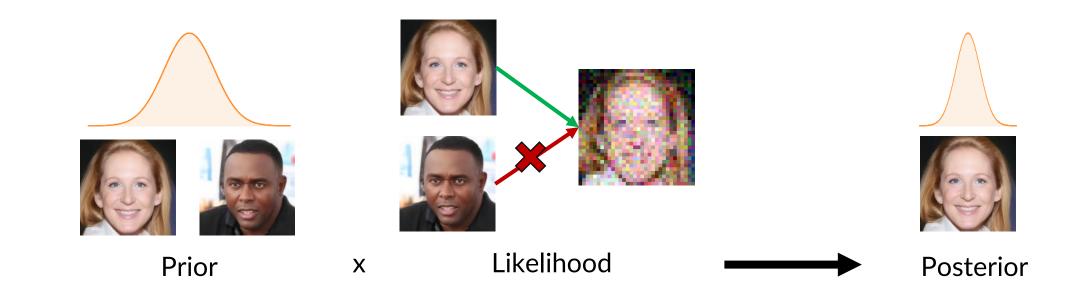
JPEG + Super-resolution

JPEG + Super-res + Inpainting

Many conditioning tasks

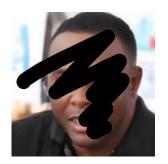
Super-resolution with Plug-and-Play

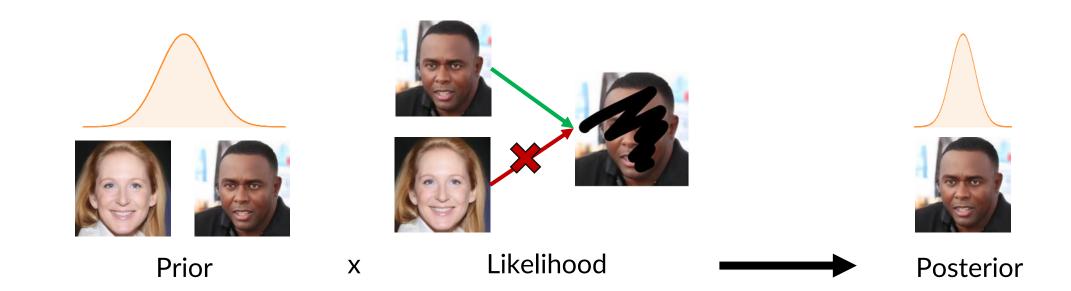
Goal: denoise and super-resolve an image



Inpainting with Plug-and-Play

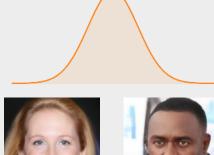
Goal: recover the masked region of an image

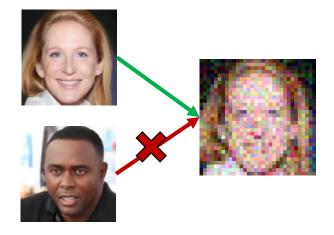


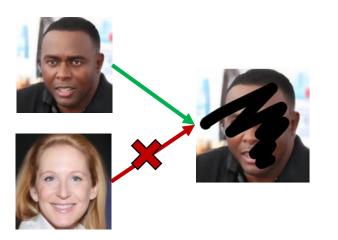


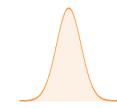
Inverse problems with Plug-and-Play

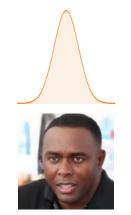
Generative model: e.g., VAE, GAN, Diffusion











Prior

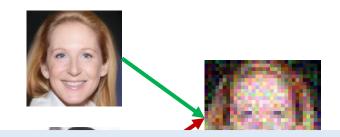
Х

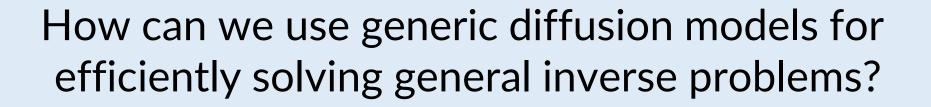
Likelihood

Inverse problems with Plug-and-Play

Generative model: e.g., VAE, GAN, Diffusion

 \frown

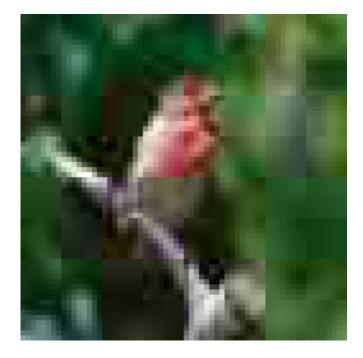




Diffusion Models for Inverse Problems Example 1. JPEG Restoration + Inpainting

IIGDM Output

Diffusion Models for Inverse Problems Example 2. JPEG Restoration + Super-resolution



IIGDM Output

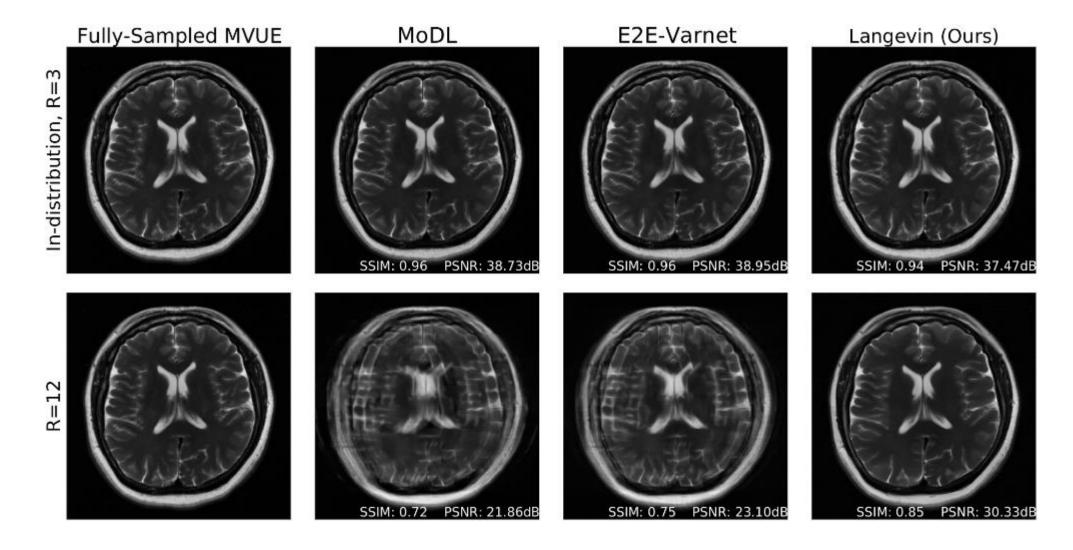
Input

Diffusion Models for Inverse Problems Example 3. JPEG Restoration + Super-resolution + Inpainting

Input

IIGDM Output

Diffusion Models for Inverse Problems Example 4. Medical Imaging Problems



[NeurIPS 2021] Robust Compressed Sensing MRI with Deep Generative Priors

Roadmap

I. Overview of DDIM

II. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

III. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

IV. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to domain-specific diffusion models.

Learning with regression:

$$\|\boldsymbol{x}_0 - \underbrace{D(\boldsymbol{x}_t; \sigma_t)}_{\text{"predict } \boldsymbol{x}_0 \text{ from } \boldsymbol{x}_t"}$$

 $\|_{2}^{2}$

 x_0

Noisy imageClean imageImage<

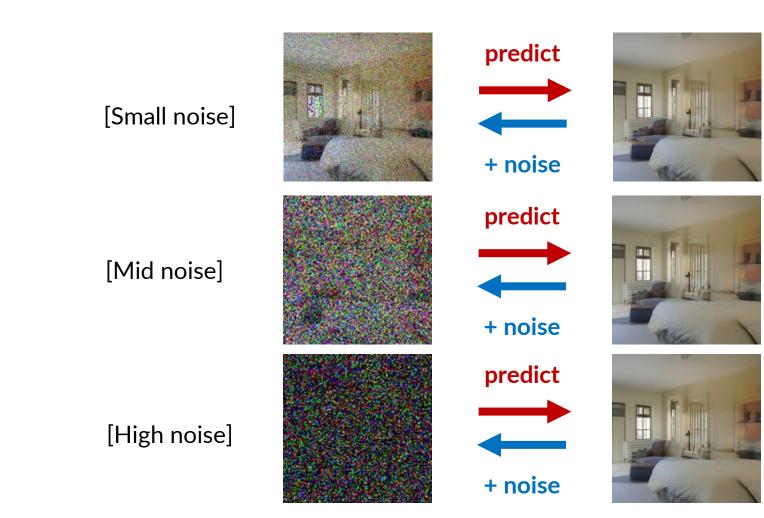
$$oldsymbol{x}_t = oldsymbol{x}_0 + \sigma_t \epsilon$$

[Gaussian noise]

Learning with regression: $\| \boldsymbol{x}_0 - \boldsymbol{D}(\boldsymbol{x}_t; \sigma_t) \|$

 $\|_{2}^{2}$

"predict \boldsymbol{x}_0 from \boldsymbol{x}_t "



Learning with regression: $\|x_0 - x_0\|$

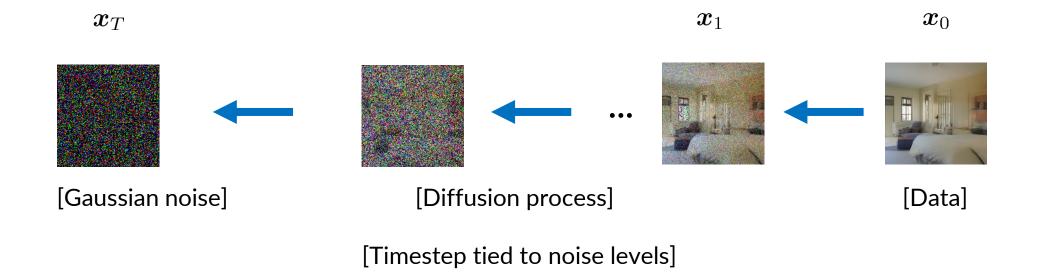
$$\underbrace{D(\boldsymbol{x}_t; \sigma_t)}_{\text{"predict } \boldsymbol{x}_0 \text{ from } \boldsymbol{x}_t}$$

 $\frac{2}{2}$

Forward diffusion process:

 $oldsymbol{x}_0 o oldsymbol{x}_1 o \dots o oldsymbol{x}_T$

[More and more noisy]



Learning with regression: $\|x_0 - x_0\|$

$$\underbrace{D(\boldsymbol{x}_t;\sigma_t)}_{2}$$

"predict \boldsymbol{x}_0 from \boldsymbol{x}_t "

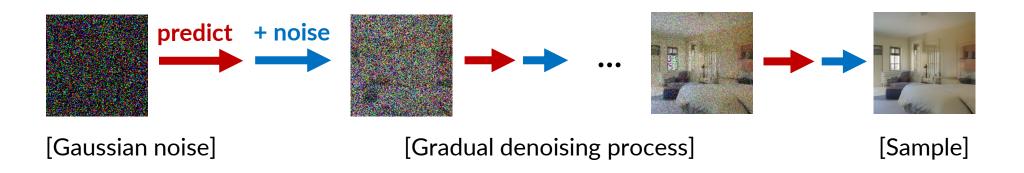
Forward diffusion process:

 $oldsymbol{x}_0
ightarrow oldsymbol{x}_1
ightarrow \cdots
ightarrow oldsymbol{x}_T$

[More and more noisy]

Reverse diffusion process:

$$oldsymbol{x}_T o oldsymbol{x}_{T-1} o \dots o oldsymbol{x}_1 o oldsymbol{x}_0$$



Reverse diffusion process:

Connections to denoising score matching and score SDEs

$$-\sigma_t \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = \frac{\mathbf{x}_t - D(\mathbf{x}_t; \sigma_t)}{\sigma_t}$$

"Score"

$$p_{T}(\mathbf{x}_{T}) \qquad p_{0}(\mathbf{x}_{0})$$

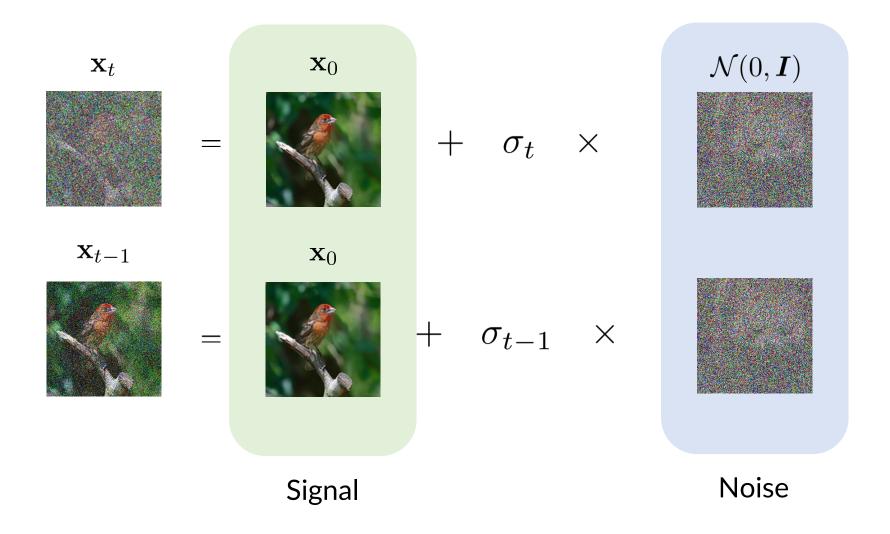
$$\int \mathbf{d} \mathbf{x} = -\underbrace{\sigma_{t}\sigma_{t}\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x})dt}_{\text{Probabilistic ODE}} - \underbrace{\beta_{t}\sigma_{t}^{2}\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x})dt}_{\text{Langevin process}}$$

DDIM: A first-order solver for the SDE

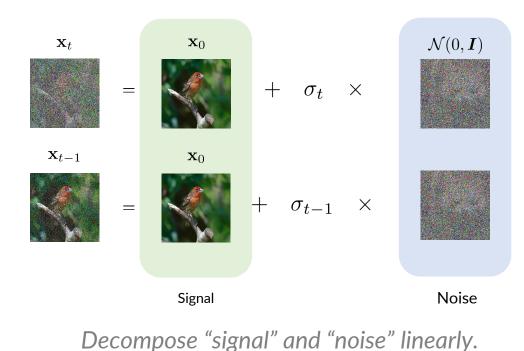
If a method works for general distributions, then it should work if dist. only has 1 datapoint.

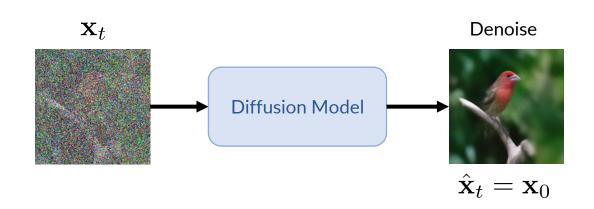
Going to explain the idea for just 1 datapoint, but it also works for general distributions The general case is related to with Variational inference, Fokker-Planck Equations, Schrodinger bridge ...

DDIM: A first-order solver for the SDE



DDIM: A first-order solver for the SDE

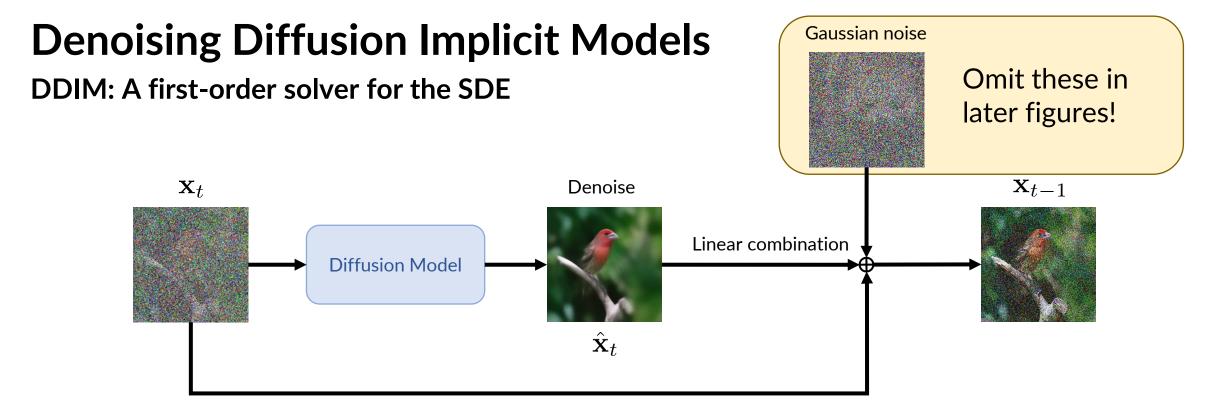




MMSE is always x_0 Distribution of 1 datapoint.

 $\mathcal{N}(0,a^2) + \mathcal{N}(0,b^2) = \mathcal{N}(0,a^2 + b^2)$

Summing iid. Gaussians gives a Gaussian.



Linearly combine input, denoise, standard Gaussian noise to get output.

 $A\mathbf{x}_t + B\hat{\mathbf{x}}_t + C\epsilon \to \mathbf{x}_{t-1}$

Condition 1: noise coefficient $(A\sigma_t)^2 + C^2 = \sigma_{t-1}^2$ Condition 2: signal coefficient A + B = 1

There is 1 degree of freedom! (amount of stochasticity in the process)

DDIM: A first-order solver for the SDE

The ODE solver (C = 0) is quite efficient, often gives good results in 20 – 100 iterations!

A first-order exponential integrator in the ODE case.

DDIM (10, 20, 50, 100 iterations)

Roadmap

I. Overview of DDIM

II. Denoising Diffusion Restoration Models

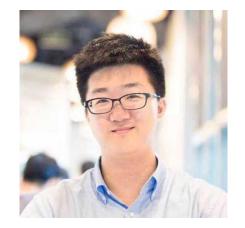
Solving noisy, linear inverse problems on images, quickly.

III. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

IV. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to domain-specific diffusion models.



Bahjat Kawar

Michael Elad

Stefano Ermon

Jiaming Song

(Linear) Inverse Problems

Given noisy observation y, recover x.

 $\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$

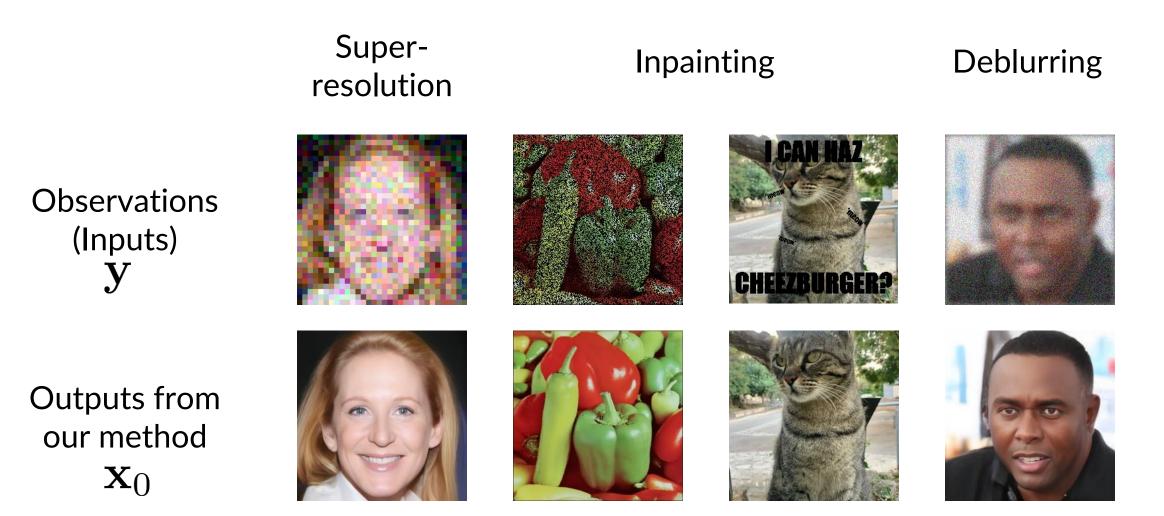
[Degradation]

 $\begin{array}{ll} [\text{Noisy observation}] & [\text{Noise, Gaussian} \\ & \text{stddev} = \boldsymbol{\sigma}_{\mathbf{y}}] \end{array}$

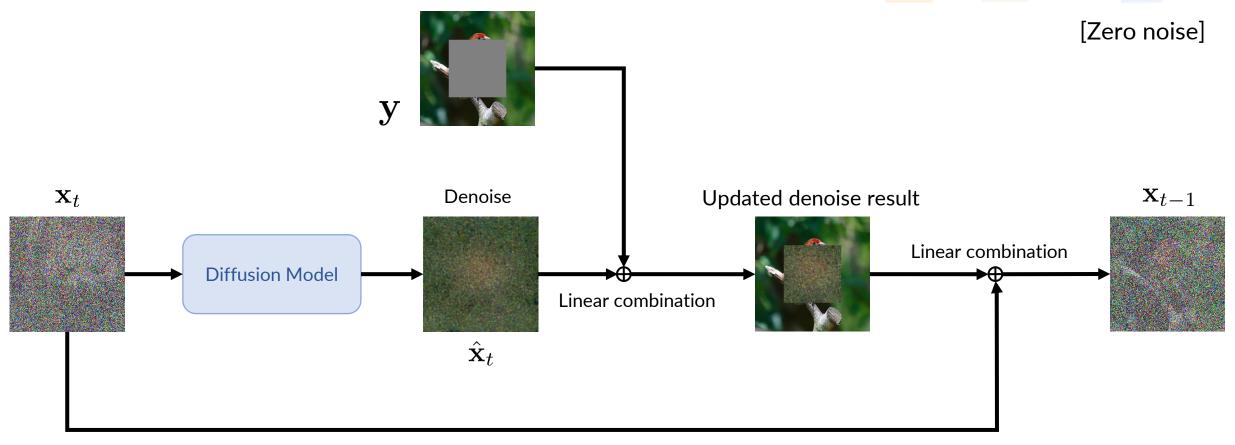
Super-resolution: observed low resolution image.

Inpainting: observed masked image.

Deblurring: observed blurred image.



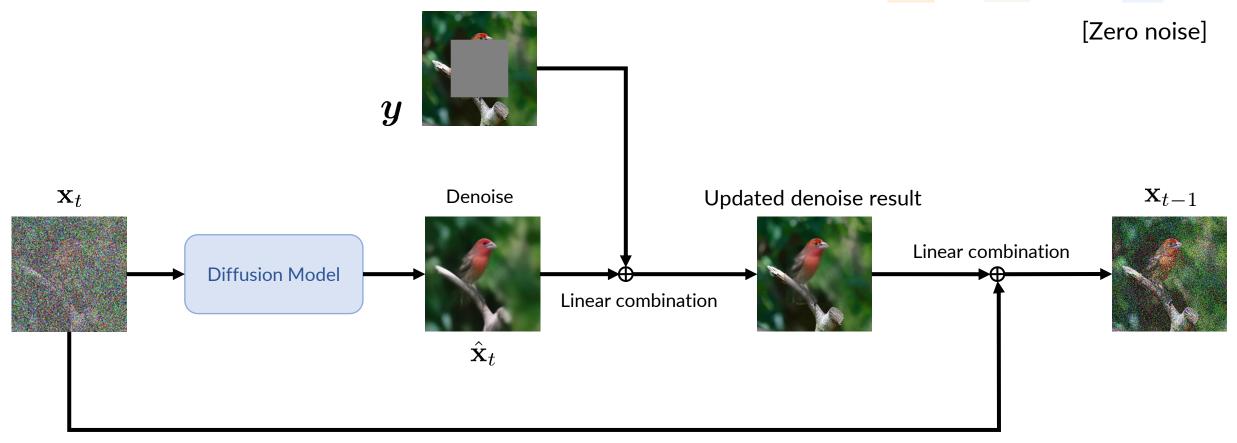
[H = Diagonal with 0 and 1's]



[NeurIPS 2022] Denoising Diffusion Restoration Models

Case 1: Noiseless inpainting

[H = Diagonal with 0 and 1's]



[ICLR 2021] Denoising Diffusion Implicit Models [NeurIPS 2022] Denoising Diffusion Restoration Models

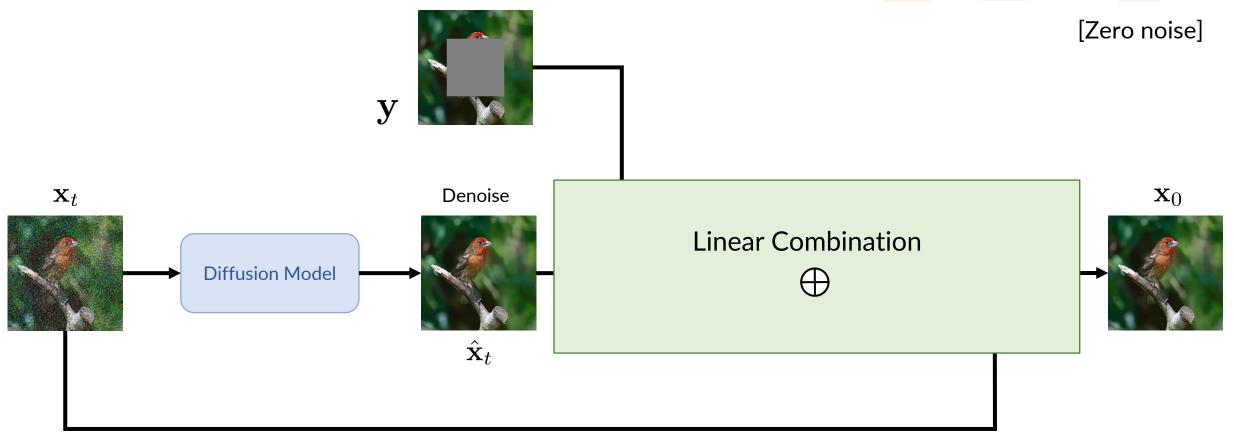
Case 1: Noiseless inpainting

Case 1: Noiseless inpainting $\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$ [Zero noise] У $\tilde{\mathbf{x}}_t = \boldsymbol{H}^{\dagger} \mathbf{y} + (\boldsymbol{I} - \boldsymbol{H}^{\dagger} \boldsymbol{H}) \hat{\mathbf{x}}_t$ Updated denoise result \mathbf{x}_t Denoise \mathbf{x}_0 Linear combination **Diffusion Model** Linear combination $A\mathbf{x}_t + B\tilde{\mathbf{x}}_t + C\epsilon \to \mathbf{x}_{t-1}$ $\hat{\mathbf{x}}_t$

[H = Diagonal with 0 and 1's]

[ICLR 2021] Denoising Diffusion Implicit Models [NeurIPS 2022] Denoising Diffusion Restoration Models

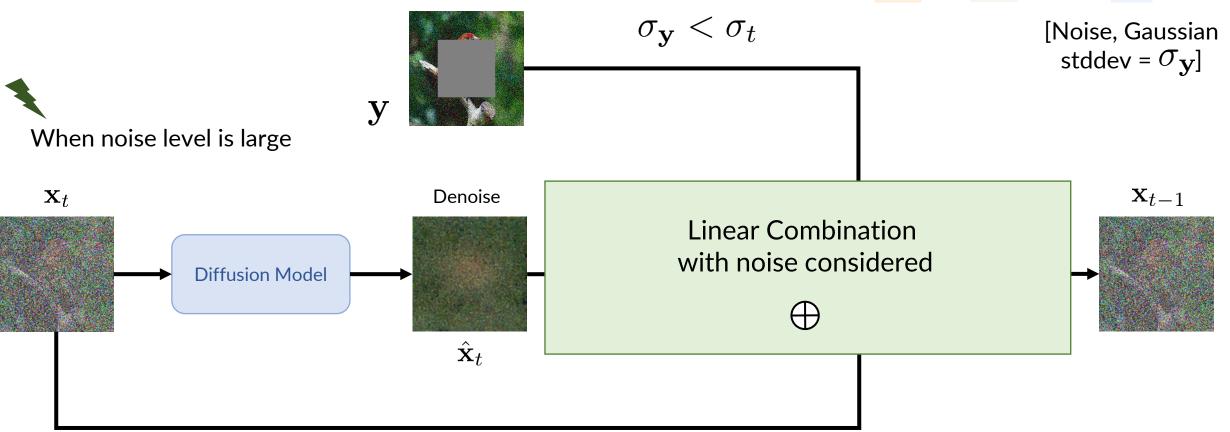
[H = Diagonal with 0 and 1's]



[ICLR 2021] Denoising Diffusion Implicit Models [NeurIPS 2022] Denoising Diffusion Restoration Models

Case 1: Noiseless inpainting

[H = Diagonal with 0 and 1's]

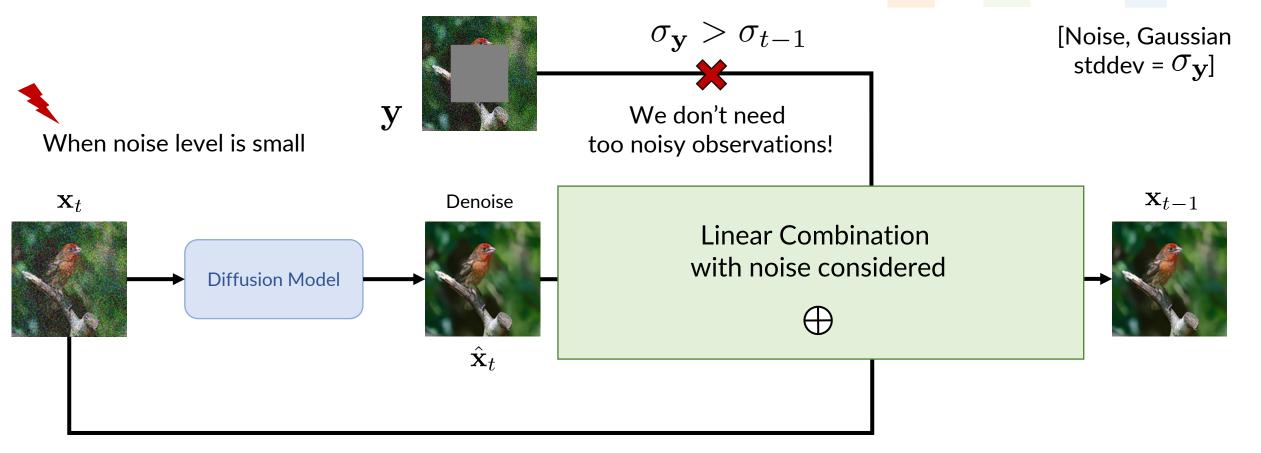


[NeurIPS 2022] Denoising Diffusion Restoration Models

Case 2: Noisy inpainting

[H = Diagonal with 0 and 1's]

$$\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$$



[NeurIPS 2022] Denoising Diffusion Restoration Models

Case 2: Noisy inpainting

 $\sigma_{\mathbf{v}} > \sigma_{t-1}$ Observation is already too noisy, just run DDIM.

 $\sigma_{\mathbf{y}} \leq \sigma_{t-1}$ We can perform linear projection on "noisy denoised" samples.

Case 2: Noisy inpainting

[H = Diagonal with 0 and 1's]

$$\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$$

[Noise, Gaussian stddev = σ_{y}]

 \mathbf{x}_t Denoise Add some noise again $\hat{\mathbf{x}}_t = oldsymbol{H}^\dagger \mathbf{y} + (oldsymbol{I} - oldsymbol{H}^\dagger oldsymbol{H}) \hat{\mathbf{x}}_t$ **Diffusion Model** Signal coefficient = 1 Noise coefficient = σ_y $\hat{\mathbf{x}}_t$ $\hat{\mathbf{x}}_t + \sigma_{\mathbf{y}}\epsilon$ Noisy observations У [NeurIPS 2022] Denoising Diffusion Restoration Models

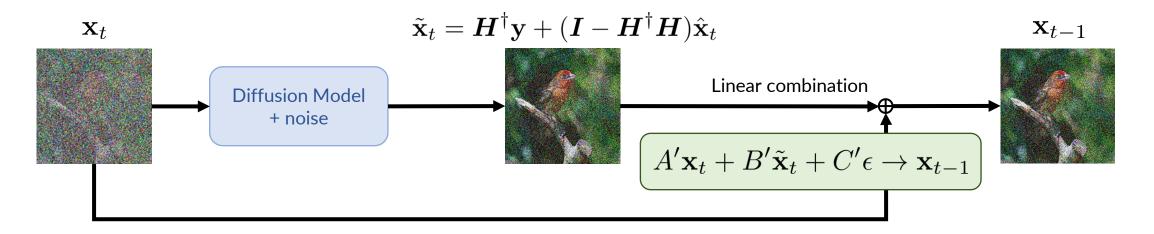
[H = Diagonal with 0 and 1's]

 $\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$

Case 2: Noisy inpainting

 $\sigma_{\mathbf{y}} \leq \sigma_{t-1}$ We can perform linear projection on "noisy denoised" samples.

[Noise, Gaussian stddev =
$$\sigma_{\mathbf{y}}$$
]



Condition 1: noise coefficient $(A'\sigma_t)^2 + (B'\sigma_y)^2 + (C')^2 = \sigma_{t-1}^2$ Condition 2: signal coefficient A' + B' = 1

Case 2: Noisy inpainting

 $\sigma_{\mathbf{y}} > \sigma_{t-1}$ Observation is already too noisy, just run DDIM.

$$A\mathbf{x}_t + B\hat{\mathbf{x}}_t + C\epsilon \to \mathbf{x}_{t-1}$$

[H = Diagonal with 0 and 1's]

$$\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$$

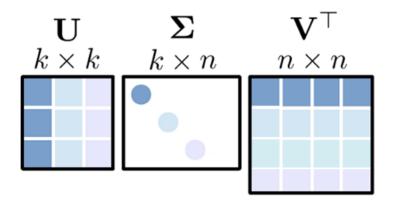
[Noise, Gaussian stddev = $\sigma_{\mathbf{y}}$]

 $\sigma_{\mathbf{y}} \leq \sigma_{t-1} \quad \text{We can perform linear projection on "noisy denoised" samples.} \\ \tilde{\mathbf{x}}_t = \mathbf{H}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{H}^{\dagger} \mathbf{H}) \hat{\mathbf{x}}_t \\ A' \mathbf{x}_t + B' \tilde{\mathbf{x}}_t + C' \epsilon \rightarrow \mathbf{x}_{t-1}$

1 + 1 = 2 degrees of freedom! In the paper, these are η and η_b , respectively.

Most general case: any linear inverse problem $H = U \Sigma V^{\top}$

H is "diagonal" with respect to its spectral space

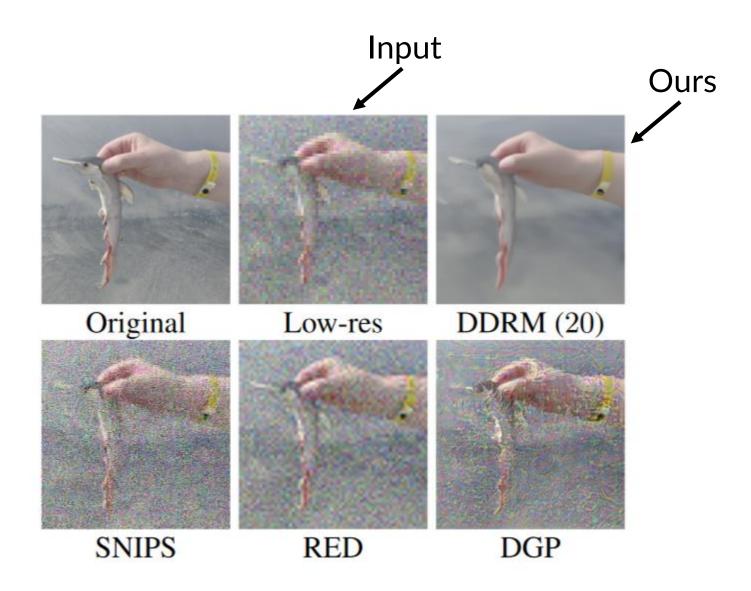


 $\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$

 $oldsymbol{U}^ op \mathbf{y} = oldsymbol{\Sigma}(oldsymbol{V}^ op \mathbf{x}_0) + oldsymbol{U}^ op \mathbf{z})$

DDRM: run "denoising and inpainting", but in spectral space (handle noisy cases $\sigma_y > \sigma_{t-1}$ for each dimension)

Results: compare against other DL-based methods



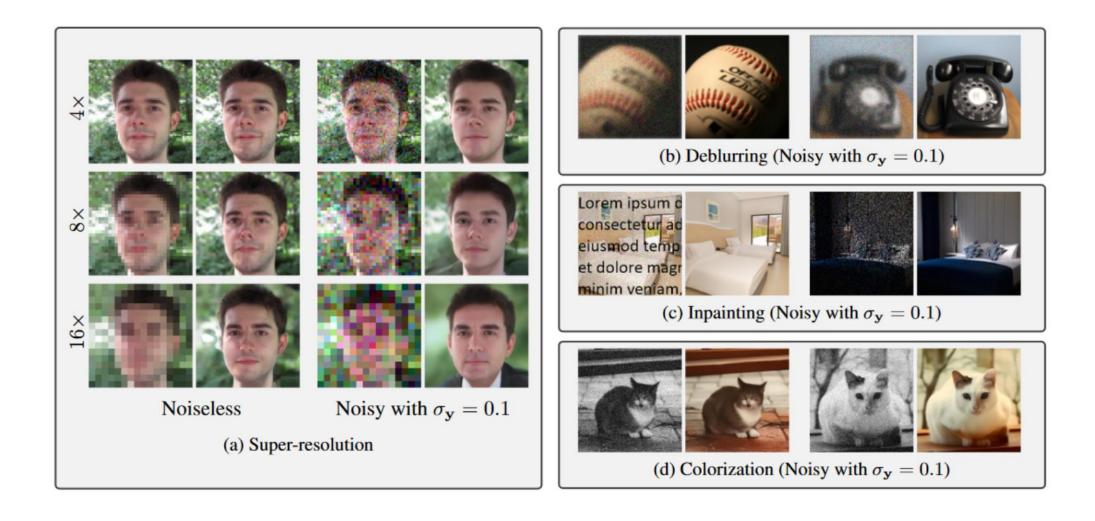
Results: compare against other DL-based methods

		4× super-res (noiseless)	~	PSNR †	KID ↓	NFEs↓
	_	DGP		23.06	21.22	1500
		RED		26.08	53.55	100
		SNIPS		17.58	35.17	1000
Ours	\rightarrow	DDRM		26.55	7.22	20

Deblurring (noisy)	~	PSNR †	KID ↓	NFEs↓
DGP		21.20	34.02	1500
RED		14.69	121.82	500
SNIPS		16.37	77.96	1000
DDRM		25.45	15.24	20

DDRM performs well within 20 Neural Function Evaluations (NFEs)!

Qualitative Results



Applicable to other domains as well!

Astronomy

Speech

Strong-Lensing Source Reconstruction with Denoising Diffusion Restoration Models

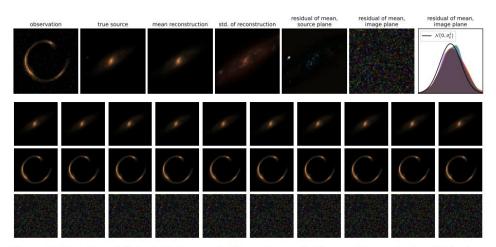


Figure 1: Top: from left to right, the mock observation, \mathbf{y} (with a medium noise level), the true source, \mathbf{x} (an unconstrained sample from AstroDDPM), the mean and standard deviation of 100 posterior samples from DDRM, $\mathbf{x}_{0,i} \sim p_{\Theta}(\mathbf{x}_0 | \mathbf{y})$, and the residual of the mean with respect to the true source and with respect to the observation in the image plane; finally, a histogram of the latter compared to a Gaussian. Bottom: each column is a random posterior sample (top row), which is then lensed to produce the respective noiseless image $\mathbf{H}\mathbf{x}_{0,i}$ (middle row). Shown (bottom row) are also the residuals between $\mathbf{H}\mathbf{x}_{0,i}$ and the observation. In residual plots, negative values in one channel are shown as positive values in the other two (red \leftrightarrow cyan, green \leftrightarrow magenta, blue \leftrightarrow yellow), considering complementary colors as "negative".

A VERSATILE DIFFUSION-BASED GENERATIVE REFINER FOR SPEECH ENHANCEMENT

Ryosuke Sawata Naoki Murata Yuhta Takida Toshimitsu Uesaka Takashi Shibuya Shusuke Takahashi Yuki Mitsufuji

Sony Group Corporation, Tokyo, Japan

UNSUPERVISED VOCAL DEREVERBERATION WITH DIFFUSION-BASED GENERATIVE MODELS

Koichi Saito Naoki Murata Toshimitsu Uesaka Chieh-Hsin Lai Yuhta Takida Takao Fukui Yuki Mitsufuji

Sony Group Corporation, Tokyo, Japan

Roadmap

I. Overview of DDIM

II. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

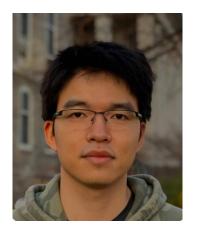
III. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

IV. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to domain-specific diffusion models.

PhysDiff: Guided Human Motion Diffusion Model



Ye Yuan

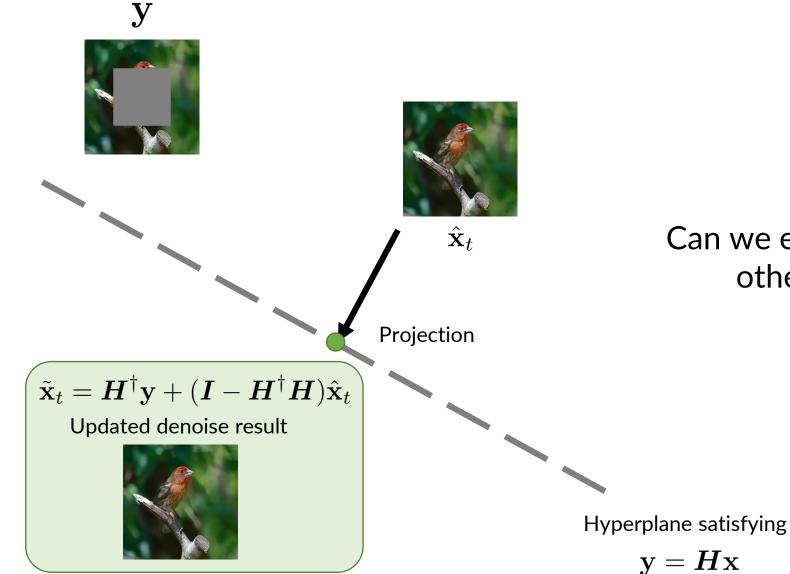
Jiaming Song

Umar Iqbal

Arash Vahdat

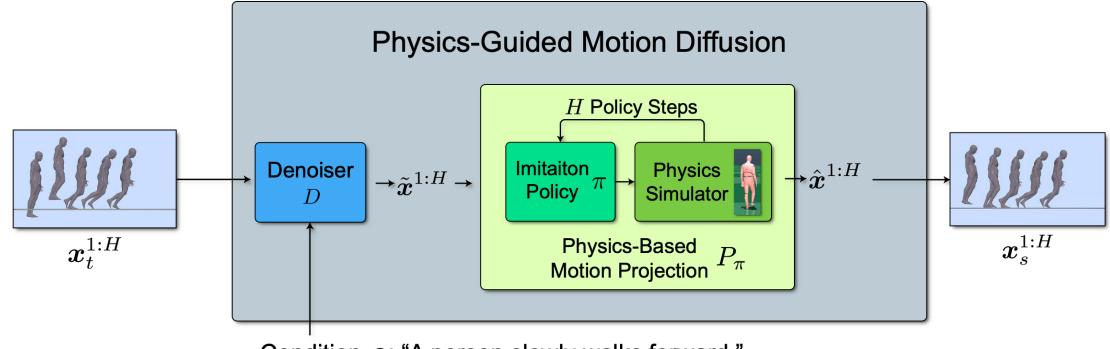
Jan Kautz

A projection step within DDRM...



Can we extend the projection idea to other non-linear problems?

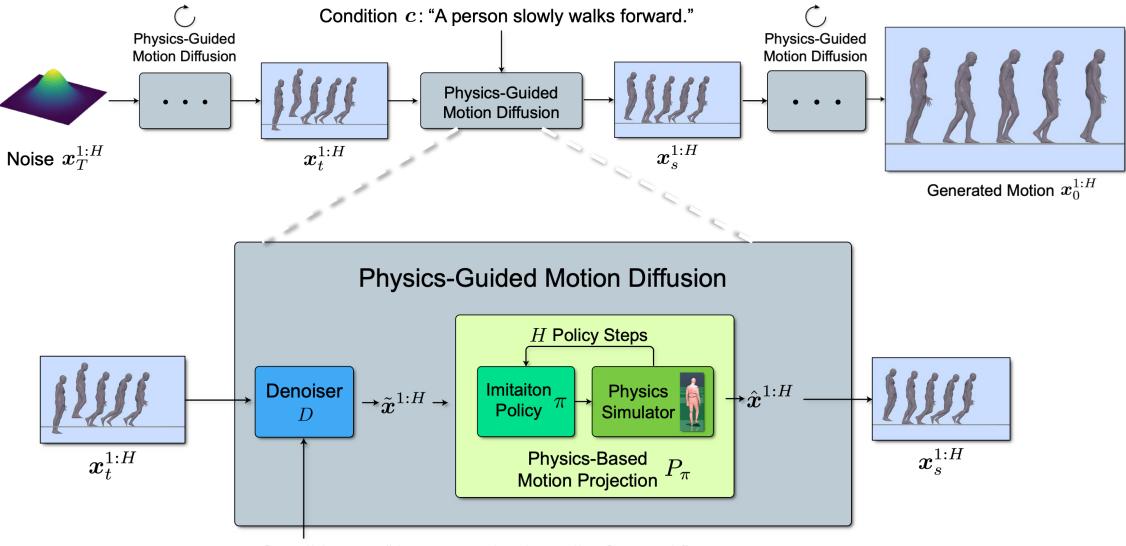
Idea behind PhysDiff



Condition c: "A person slowly walks forward."

Project non-physically-plausible motions to physically-plausible ones!

Overview of PhysDiff



Condition c: "A person slowly walks forward."

Roadmap

I. Overview of DDIM

II. Denoising Diffusion Restoration Models

Solving noisy, linear inverse problems on images, quickly.

III. PhysDiff: Guided Human Motion Diffusion Model

Enforce physical constraints in diffusion models.

IV. Pseudoinverse-Guided Diffusion Models

First to achieve SOTA performance comparable to domain-specific diffusion models.

Pseudoinverse-Guided Diffusion Models for Inverse Problems

Jiaming Song

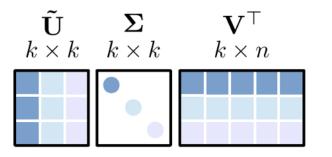
Arash Vahdat

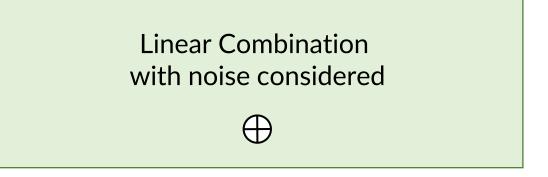
Morteza Mardani

Jan Kautz

Limitations of DDRM

1. Only supports linear measurements.





2. Works poorly for very sparse measurements.

Output

Problem: update only affects a few pixels!

Challenges in plug-and-play style inverse problems

Solution: backprop through diffusion model, so update affects all pixels!

$$\nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t} | \mathbf{y}) = \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t}) + \frac{\nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{y} | \mathbf{x}_{t})}{\text{Conditional score}}$$
Prior diffusion model
This is not known

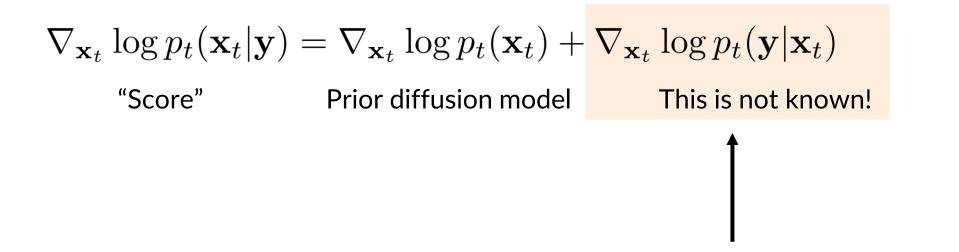
Graphical model is a Markov chain:

Data $\mathbf{y} \leftarrow \mathbf{x}_0
ightarrow \mathbf{x}_t$ Observation Add Gaussian noise

$$p_t(\mathbf{y}|\mathbf{x}_t) = \int_{\mathbf{x}_0} p(\mathbf{x}_0|\mathbf{x}_t) p(\mathbf{y}|\mathbf{x}_0) d\mathbf{x}_0 \quad \text{is "intractable" even if we have} \quad p(\mathbf{y}|\mathbf{x}_0)$$

Guidance methods for inverse problems

Solution: backprop through diffusion model, so update affects all pixels!

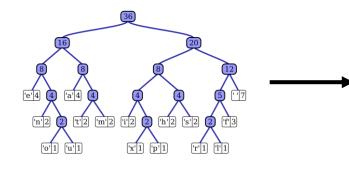


We approximate this with *Pseudoinverse Guidance*

[NeurIPS 2021] Diffusion Models Beat GANs on Image Synthesis

Given input (e.g., JPEG encoding), how to recover with diffusion models?

JPEG is not differentiable!



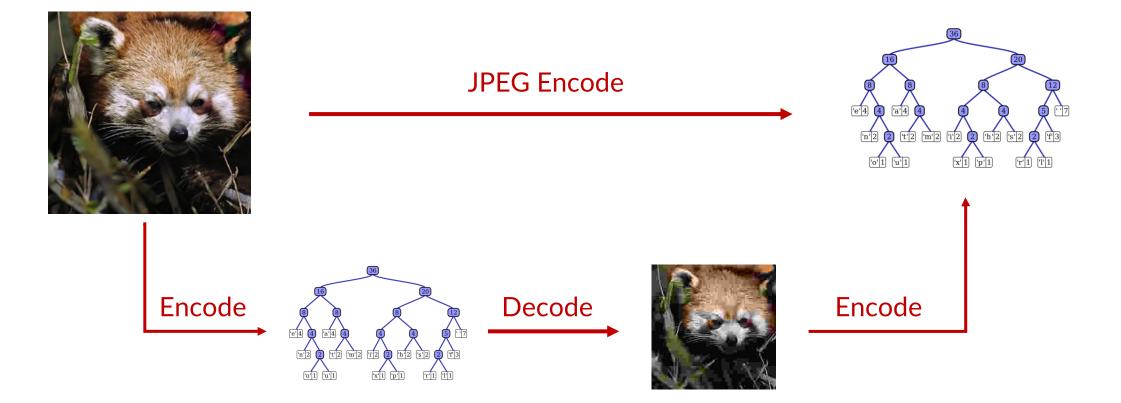
JPEG Huffman coding

JPEG Decode

IIGDM Output

We use a property of pseudoinverse of matrices:

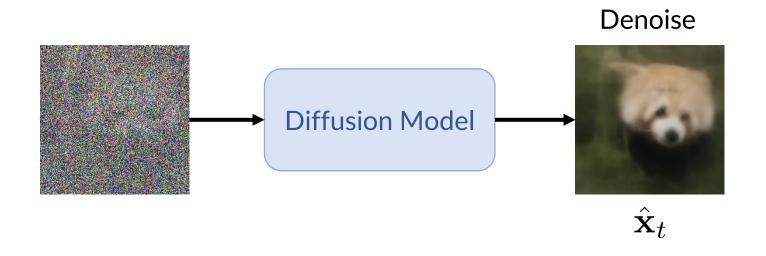
 $HH^{\dagger}H=H$



JPEG decode is "pseudoinverse" of JPEG encode!

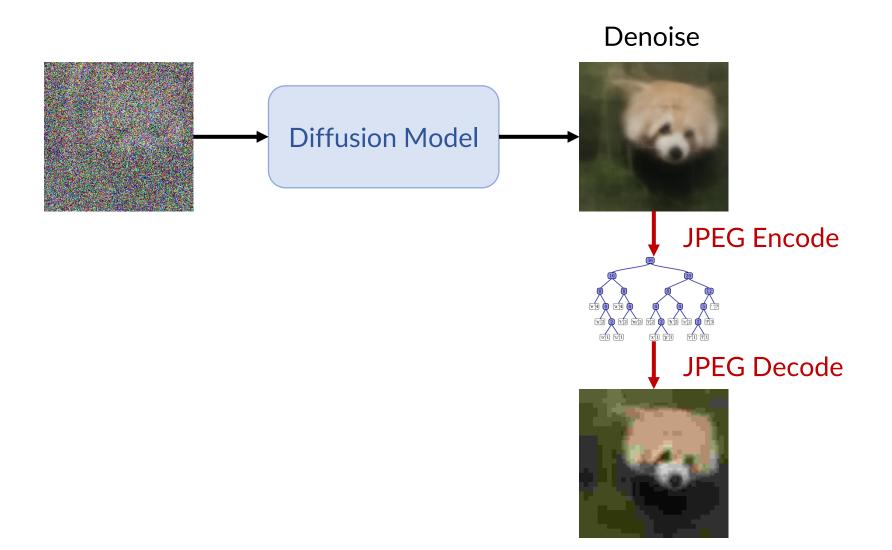
[NeurIPS 2022 Workshop] JPEG Artifact Correction using Denoising Diffusion Restoration Models

Step 1: Diffusion model makes a prediction that is "denoised".

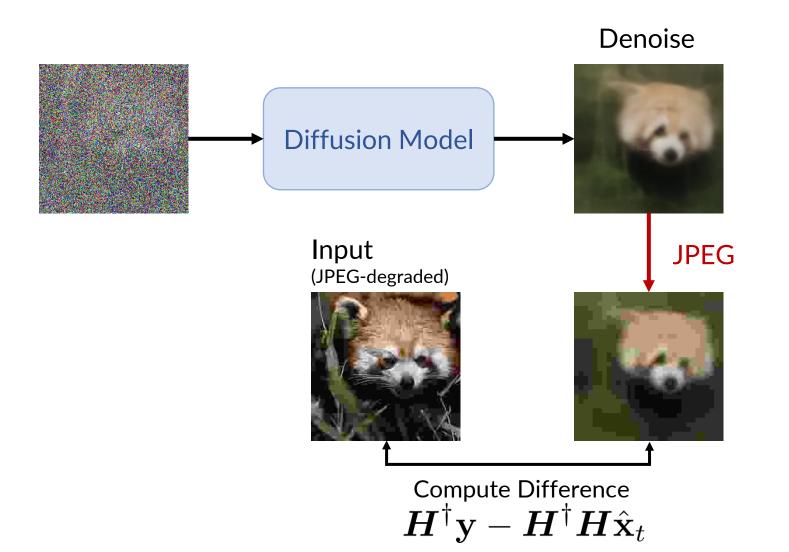


The diffusion model is generic and not problem-dependent!

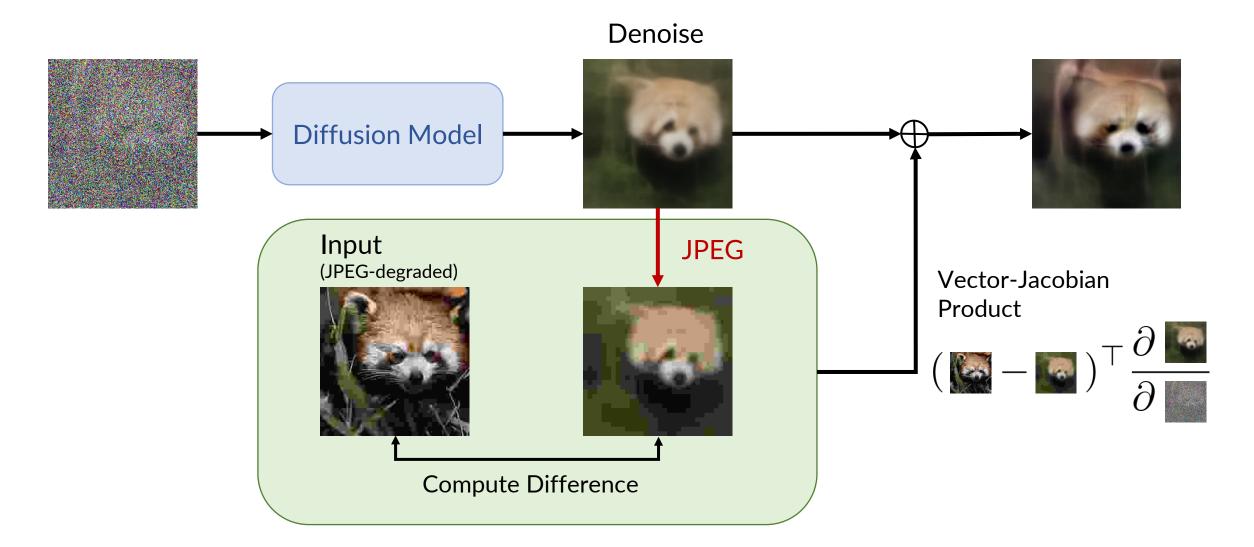
Step 2: Degradation & its "pseudoinverse" are applied to denoised prediction



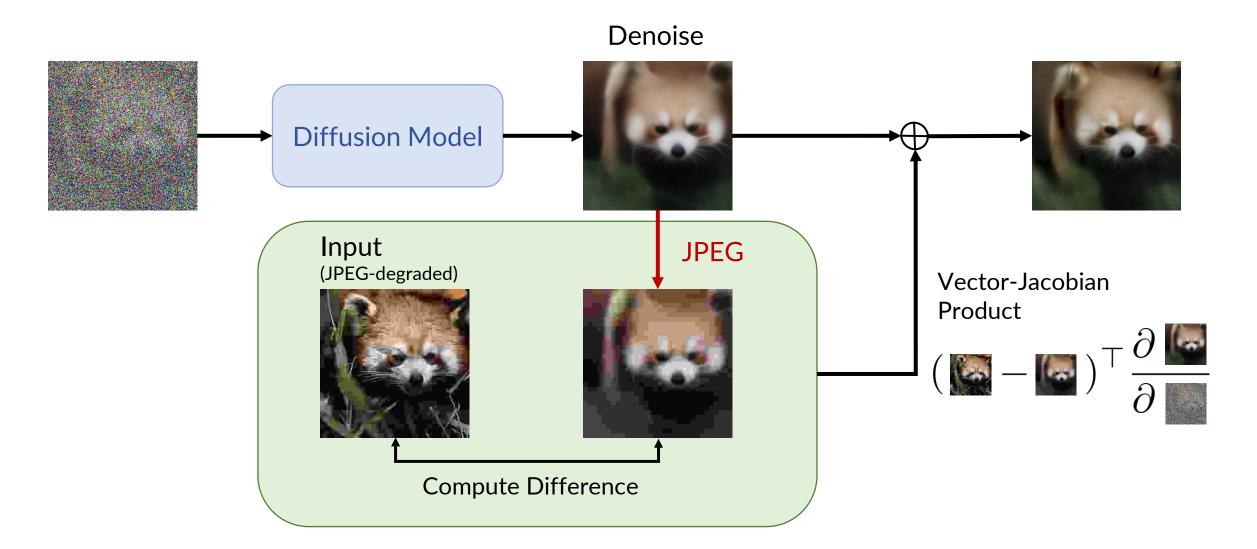
Step 3: Compute difference between the given input.



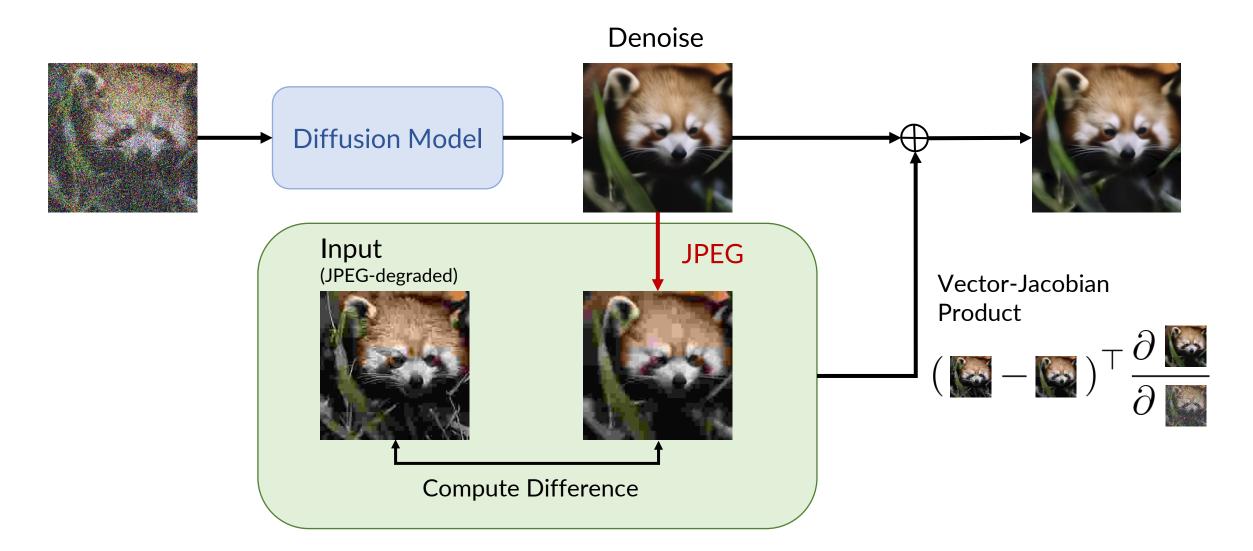
Step 4: Leverage the difference to guide the prediction closer to input.



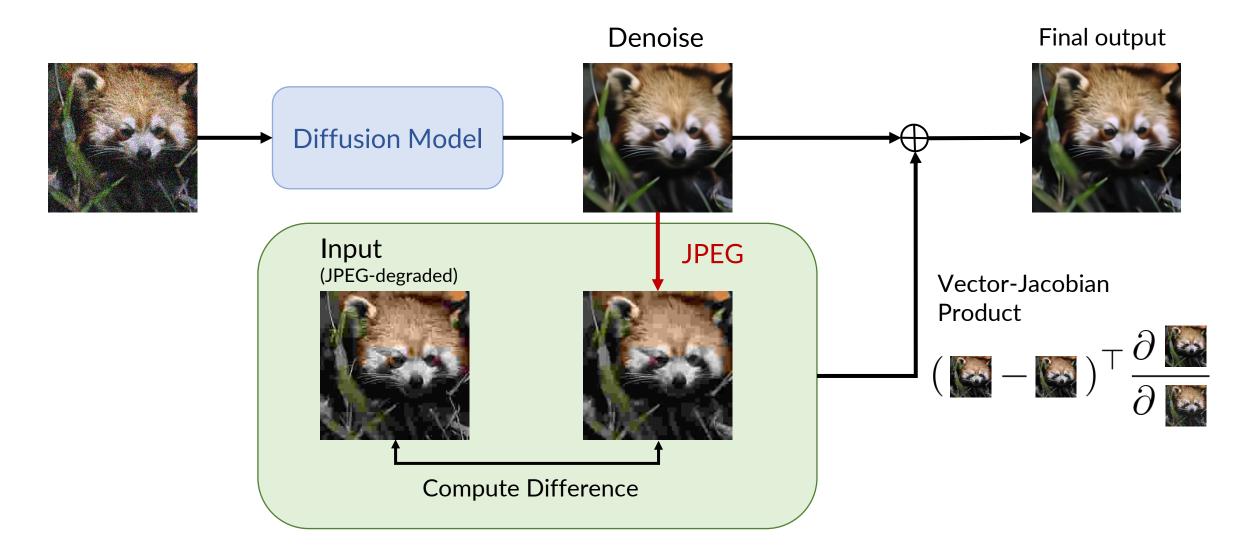
Step 5: Repeat for lower noise levels (high noise).



Step 5: Repeat for lower noise levels (mid noise).

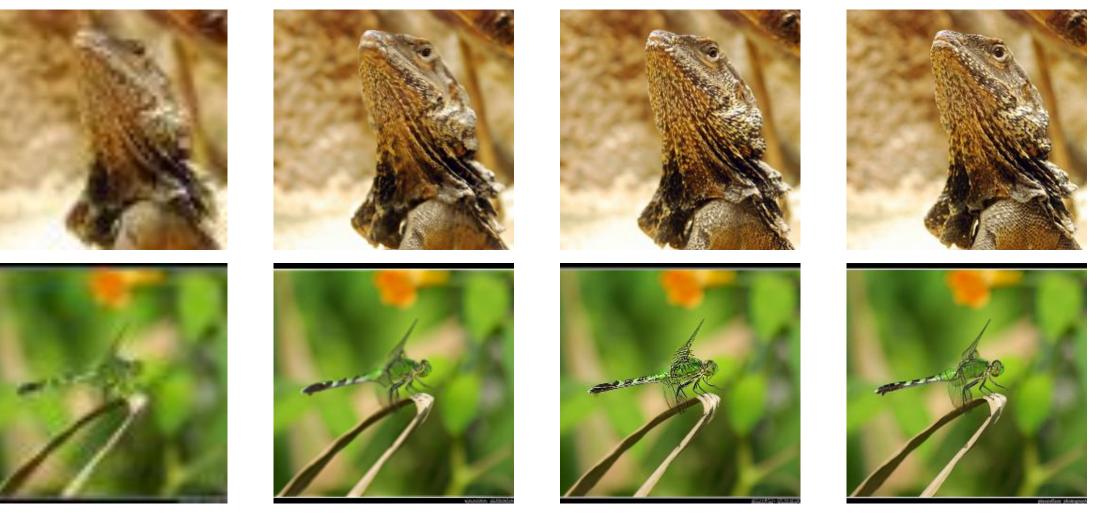


Step 5: Repeat for lower noise levels (low noise).



IGDM in practice (super-resolution)

Using a generic diffusion model, **IIGDM** is competitive against specialized models!



Low-res Input

ADM-U Output

IIGDM Output

Reference

IGDM in practice (super-resolution)

Using a generic diffusion model, **IIGDM** is competitive against specialized models!

Low-res Input

ADM-U Output

IIGDM Output

Reference

IGDM in practice (JPEG restoration)

Using a generic diffusion model, **IIGDM** is competitive against specialized models!

JPEG Input

Palette Output

IIGDM Output

Reference

IGDM in practice (Inpainting)

Using a generic diffusion model, **IIGDM** is competitive against specialized models!

Masked Input

IIGDM Output 1

IIGDM Output 2

IIGDM Output 3

$$\nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t} | \mathbf{y}) = \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{y} | \mathbf{x}_{t})$$
"Score" Prior diffusion model This is not known!

Idea: find good approximations to $p_t(\mathbf{y}|\mathbf{x}_t)$

$$p_t(\mathbf{y}|\mathbf{x}_t) = \int_{\mathbf{x}_0} p(\mathbf{x}_0|\mathbf{x}_t) p(\mathbf{y}|\mathbf{x}_0) d\mathbf{x}_0$$

Approximate with Gaussian $p_t(\mathbf{x}_0 | \mathbf{x}_t) \approx \mathcal{N}(\hat{\mathbf{x}}_t, r_t^2 \mathbf{I})$

$$\hat{\mathbf{x}}_t (\mathbf{x}_0 | \mathbf{x}_t) \approx \mathcal{N}(\mathbf{x}_t, r_t)$$
 $\hat{\mathbf{x}}_t = D(\mathbf{x}_t; \sigma_t)$

Mean = denoised result Standard deviation = hyperparameter Known from linear relationship [Degradation]

$$\mathbf{y} = H\mathbf{x}_0 + \mathbf{z}$$

[Noisy observation]

[Noise]

 $p_t(\mathbf{y}|\mathbf{x}_t) \approx \mathcal{N}(\boldsymbol{H}\hat{\mathbf{x}}_t, r_t^2 \boldsymbol{H} \boldsymbol{H}^\top + \sigma_{\mathbf{y}}^2 \boldsymbol{I})$ is approximately Gaussian!

Case 1: Noise is positive

$$\nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{y}|\mathbf{x}_{t}) \approx \left(\underbrace{(\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_{t})^{\top} \left(r_{t}^{2}\mathbf{H}\mathbf{H}^{\top} + \sigma_{\mathbf{y}}^{2}\mathbf{I}\right)^{-1} \mathbf{H}}_{\text{vector}} \underbrace{\underbrace{\partial \hat{\mathbf{x}}_{t}}_{\text{Jacobian}}}_{\text{Backprop through diffusion model}}\right)^{\top}.$$

Case 2: Noise is zero

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{y}|\mathbf{x}_t) \approx r_t^{-2} \left((\mathbf{H}^{\dagger} \mathbf{y} - \mathbf{H}^{\dagger} \mathbf{H} \hat{\mathbf{x}}_t)^{\top} \frac{\partial \hat{\mathbf{x}}_t}{\partial \mathbf{x}_t} \right)^{\top}$$

 $H^{\dagger} = H^{\top} (HH^{\top})^{-1}$ is matrix pseudoinverse!

- Vector Jacobian Product (vJp) can be computed by backprop
- Vector does not have to be differentiable

Case 2: Noise is zero $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{y}|\mathbf{x}_t) \approx r_t^{-2} \left((\mathbf{H}^{\dagger}\mathbf{y} - \mathbf{H}^{\dagger}\mathbf{H}\hat{\mathbf{x}}_t)^{\top} \frac{\partial \hat{\mathbf{x}}_t}{\partial \mathbf{x}_t} \right)^{\top}$ $\mathbf{H}^{\dagger} = \mathbf{H}^{\top} (\mathbf{H}\mathbf{H}^{\top})^{-1} \quad \text{is matrix pseudoinverse!}$

Pseudoinverse guidance for case 2:

1. Compute vector $\boldsymbol{H}^{\dagger}\mathbf{y} - \boldsymbol{H}^{\dagger}\boldsymbol{H}\hat{\mathbf{x}}_{t}$

2. Compute vector-Jacobian product with backprop.

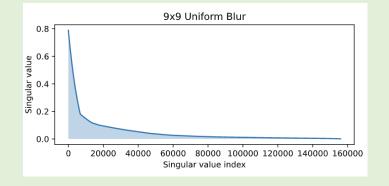
Pseudoinverse Guidance vs. Reconstruction Guidance

Reconstruction guidance [Ho et al., 2022 (Video Diffusion Models)]:

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{y}|\mathbf{x}_t) \approx r_t^{-2} \|\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_t\|_2^2 = r_t^{-2} \left((\mathbf{H}^\top \mathbf{y} - \mathbf{H}^\top \mathbf{H}\hat{\mathbf{x}}_t)^\top \frac{\partial \mathbf{x}_t}{\partial \mathbf{x}_t} \right)^\top$$

Pseudoinverse guidance changes transpose to pseudoinverse!

Singular values of $H^{\dagger}H$ are 0 or 1 Works well for poorly-conditioned matrices!



 \cap

Pseudoinverse Guidance: Quantitative Results

Super-resolution

Inpainting

Filter	Method	FID ↓	$\mathbf{CA}\uparrow$	Mask	Method	FID-10k↓	CA ↑
Pool	ADM (cc, Dhariwal & Nichol (2021))	3.1	73.4%		DeepFillv2 (Yu et al., 2019)	18.0	64.3%
	DDRM (Kawar et al., 2022a)	14.8	64.6%	Center	Palette (Saharia et al., 2022a)	6.6	69.3%
	ПGDM (Ours)	3.8	72.3%		DDRM (Kawar et al., 2022a)	24.4	62.1%
	DDRM (<i>cc</i> , Kawar et al. (2022a))	14.1	65.2%		ПGDM (<i>Ours</i>)	7.3	72.6%
	$\Pi \text{GDM} (cc, Ours) \qquad \underline{3}.$		72.2%		ПGDM (noisy, Ours)	9.5	72.2%
	SR3 (Saharia et al., 2021)	5.2	68.3%		• • •		68.8%
	ADM (cc, Dhariwal & Nichol (2021))	14.8	66.7%	F 6	DeepFillv2 (Yu et al., 2019)	9.4	
Dischio	DDRM (Kawar et al., 2022a)	21.3	63.2%		Palette (Saharia et al., 2022a)	5.2	72.3%
Bicubic	ПGDM (Ours)	3.6	72.1%		DDRM (Kawar et al., 2022a)	8.6	71.9%
	DDRM (cc. Kawar et al. (2022a)) $\overline{19.6}$ $\overline{65.3\%}$			ПGDM (Ours)	5.3	75.3%	
	ПGDM (cc, Ours)	3.2	75.1%		ПGDM (noisy, Ours)	7.3	<u>74.5%</u>

Comparable with Palette and ADM-U, state-of-the-art diffusion models specifically trained on the tasks.

Pseudoinverse Guidance: Quantitative Results

JPEG Restoration

QF	Method	FID-10k \downarrow	CA ↑
5	Regression (Saharia et al., 2022a)	29.0	52.8%
	Palette (Saharia et al., 2022a)	8.3	64.2 %
	IIGDM (Ours)	8.6	64.1%
10	Regression (Saharia et al., 2022a)	18.0	63.5%
	Palette (Saharia et al., 2022a)	5.4	70.7%
	IIGDM (Ours)	6.0	71.0%
20	Regression (Saharia et al., 2022a)	11.5	69.7%
	Palette (Saharia et al., 2022a)	4.3	73.5%
	IIGDM (Ours)	<u>4.7</u>	74.4%

Comparable with Palette and ADM-U, state-of-the-art diffusion models specifically trained on the tasks.

Combining multiple operators

$$h(\mathbf{x}) = h_1 \circ h_2 \ldots \circ h_k(\mathbf{x})$$

down sampling -> JPEG encode -> masking

Input

$$h^{\dagger}(\mathbf{x}) \approx h_k^{\dagger} \circ \ldots \circ h_2^{\dagger} \circ h_1^{\dagger}(\mathbf{x})$$

unmasking -> up sampling -> JPEG decode

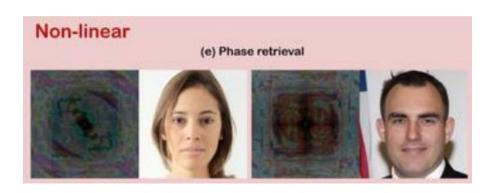
IIGDM Output

Prospects and challenges

Efficiency: **IIGDM** is slower & memory inefficient, due to backpropagation.

Generality: **GDM** is not suitable to problems without a "pseudoinverse".

Blindness: **IIGDM** is limited to "non-blind" inverse problems.



 Measurement
 Ours
 Ground truth

 (a)Blind GEblurring
 Image: Comparison of the second seco

Non-linear problems Chung *et al.*, https://arxiv.org/abs/2209.14687

Blind inverse problems Chung *et al.*, https://arxiv.org/abs/2211.10656

Some efforts on these directions, yet not fast / robust enough!

Summary

Diffusion models can act as efficient priors for inverse problems.

[NeurIPS 2022] Diffusion Denoising Restoration Models

- <u>https://github.com/bahjat-kawar/ddrm</u>
- <u>https://ddrm-ml.github.io/</u>

PhysDiff: Physics-Guided Human Motion Diffusion Model

<u>https://nvlabs.github.io/PhysDiff/</u>

Pseudoinverse-Guided Diffusion Models for Inverse Problems

- Accepted to ICLR 2023
- Draft: <u>https://openreview.net/forum?id=9_gsMA8MRKQ</u>

Thanks!

https://tsong.me