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Motivation



Bayesian Inference

Parameters θ, observations D:

Input prior p(θ) and likelihood p(D|θ)
Output posterior p(θ|D) through Bayes’ rule:

p(θ|D) =
p(θ)p(D|θ)
p(D)

Problem: marginal p(D) is intractable!

Solutions: Variational Inference and Markov chain Monte Carlo
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Bayesian Inference

Variational Inference: approximate the posterior with some
tractable model and minimize its distance with the posterior.

Examples mean field approximation [2]
Advantages optimization is efficient
Drawbacks performance limited by choice of model
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Bayesian Inference

Markov chain Monte Carlo: approximate the posterior with particles
sampled from Markov chain with desired stationary distribution.

Method Proposal for next particle + Metropolis-Hastings
Examples Gibbs sampling [4], Hamiltonian Monte Carlo [8]

Advantages reaches the true posterior asymptotically
Drawbacks need many samples to obtain good estimates
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Deep Bayesian Learning

Variational Inference <- Deep Learning: 3

• stochastic gradient descent as optimization algorithm
• expressive function approximations to represent model

Markov chain Monte Carlo <- Deep Learning: 7

• proposals are hand-designed in general
• cannot apply expressive function approximations directly
• hard to evaluate / optimize metrics
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Outline

We introduce A-NICE-MC, a new method for training flexible MCMC
kernels.

• proposals are parameterized using (deep) neural networks
• use adversarial methods to train a Markov chain that

• matches a target stationary quickly (burn-in)
• achieves low autocorrelation between samples (mixing)

• learned proposals are much more efficient than traditional ones

Markov chain Monte Carlo + Deep Learning: 3
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Notations and Problem Setup



Notations

A sequence of continuous random variables {xt}∞t=0 is drawn through
the following Markov chain:

x0 ∼ π0 xt+1 ∼ Tθ(xt+1|xt)

where

• Tθ(·|x): a stochastic transition kernel parametrized by θ
• π0: some initial distribution for x0.
• πtθ : state distribution at time t.

Tθ is defined through an implicit generative model fθ(·|x, v), where
v ∼ p(v) is an auxiliary random variable.
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Problem Setup

Let pd(x) be a target distribution over x ∈ Rn, e.g.:

• a data distribution (which we can sample from)
• an (intractable) posterior distribution

Our objective is to find a Tθ such that:

1. Low bias: The stationary distribution is close to the target
distribution (minimize |πθ − pd|).

2. Efficiency: {πtθ}∞t=0 converges quickly (minimize t such that
|πtθ − pd| < δ).

3. Low variance: Samples from one chain {xt}∞t=0 should be as
uncorrelated as possible (minimize autocorrelation of {xt}∞t=0).
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Settings

Problem setup:

Input A target distribution pd(x)
Output A transition kernel Tθ(·|x)

We consider two settings for specifying the target distribution.

• pd(x) is a data distribution (samples, no analytic expression)
• pd(x) an analytic expression (up to normalization constant, no
samples)
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Adversarial Training for Markov
Chains



Parametrized Markov Chains

Assume we have direct access to samples from pd(x), and the
transition kernel Tθ(xt+1|xt) is the following implicit generative model:

v ∼ p(v) xt+1 = fθ(xt, v) (1)

for which the stationary πθ(x) exists.

Goal: find θ such that πθ(x) is close to pd.
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Training Markov Chains

Likelihood-based Approaches:

• the value of πθ(x) is typically intractable to compute
• the marginal distribution πtθ(x) at time t is also intractable
(integration over all the possible paths)

Likelihood-free Apporoaches

• sampling is easy for Markov chains!
• likelihood-free methods only requires samples
• Example: Generative Adversarial Networks [5]
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Generative Adversarial Networks

Generator G(z) : generates samples by transforming a noise variable
z ∼ p(z) into G(z)

Discriminator D(x) : trained to distinguish between samples from
the generator and samples from pd.

This describes the following objective [1]:

min
G
max
D
V(D,G) = min

G
max
D

Ex∼pd [D(x)]− Ez∼p(z)[D(G(z))] (2)
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Likelihood-free Training for Markov Chains

In our settings:

• pd(x) is the empirical distribution from the samples 3

• Gθ(z) is the stationary? approximate with state after t steps? 7

It is hard to sample from the stationary or optimize through a long
chain!

13



Conditions for Stationary Distribution

We consider two necessary conditions for pd to be a stationary:

• pd should be close to πb for some time step b
• pd is a fixed point for the transition operator

We can construct an objective that can be optimized efficiently
through the two conditions.
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Markov GAN

Markov GAN (MGAN) objective:

min
θ
max
D

Ex∼pd [D(x)]− λEx̄∼πbθ
[D(x̄)]− (1− λ)Exd∼pd,x̄∼Tmθ (x̄|xd)[D(x̄)] (3)

where

• λ ∈ (0, 1),b ∈ N+,m ∈ N+ are hyperparameters
• x̄ denotes “fake” samples from the generator
• Tmθ (x|xd) denotes the distribution of x when the transition kernel
is applied m times, starting from some “real” sample xd
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Markov GAN

Markov GAN (MGAN) objective:

min
θ
max
D

Ex∼pd [D(x)]−λEx̄∼πbθ
[D(x̄)]︸ ︷︷ ︸

converge to pd

−(1−λ)Exd∼pd,x̄∼Tmθ (x̄|xd)[D(x̄)]︸ ︷︷ ︸
fixed point at pd

(4)

We use two types of samples from the generator for training:

1. Samples after b transitions, starting from x0 ∼ π0.
2. Samples after m transitions, starting from xd ∼ pd.
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Justifications

Proposition

Consider a sequence of ergodic Markov chains over state space S .
Define πn as the stationary distribution for the n-th Markov chain,
and πtn as the probability distribution at time step t for the n-th
chain. If the following two conditions hold:

1. ∃b > 0 such that the sequence {πbn}∞n=1 converges to pd in total
variation;

2. ∃ϵ > 0, ρ < 1 such that ∃M > 0,∀m > M if ∥πtm − pd∥TV< ϵ, then
∥πt+1m − pd∥TV< ρ∥πtm − pd∥TV ;

then the sequence of stationary distributions {πn}∞n=1 converges to
pd in total variation.
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Sketch of Proof

Proof.
The goal is to prove that ∀δ > 0, ∃N > 0, T > 0, such that
∀n > N, t > T, ∥πtn − pd∥TV< δ.

• ∃N > 0, such that ∀n > N, ∥πbn − pd∥TV< ϵ (Assumption 1).
• ∀n > max(N,M), ∀δ > 0, ∃T = b+max(0, ⌈logρ δ − logρ ϵ⌉) + 1,
such that ∀t > T, ∥πtn − pd∥TV< δ (Assumption 2).

Hence the sequence {πn}∞n=1 converges to pd in total variation.
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Example: Generative Model for Images

We experiment with a distribution pd over images, such as digits
(MNIST) and faces (CelebA), where xt+1 = fθ(xt, v) is defined as

z = encoderθ(xt) z′ = ReLU(z+ βv) xt+1 = decoderθ(z′) (5)

where β is a hyperparameter we set to 0.1.

Figure 1: Visualizing samples of π1 to π50 (each row) from a model trained on
the MNIST dataset. Consecutive samples can be related in label (red box),
inclination (green box) or width (blue box).
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Transition Probabilities on MNIST

We use a classifier to classify the generated images and evaluate the
class transition probabilities Tθ(yt+1|yt)

Figure 2: The transition is not symmetric!
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Adversarial Training for MCMC



Analytical Target

Now consider the settings where the target distribution pd is
specified by an analytical expression:

pd(x) ∝ exp(−U(x)) (6)

where

• U(x) is a known energy function
• normalization constant for U(x) is not available

There are two additional challenges:

• We want the stationary to be exactly pd
• We do not have direct access to samples from pd
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Metropolis Hastings

We use ideas from the Markov Chain Monte Carlo (MCMC) literature
to address the first challenge.

Detailed Balance: pd(x)Tθ(x′|x) = pd(x′)Tθ(x|x′) for all x and x′.

Metropolis-Hastings

• a sample x′ is first obtained from a proposal distribution gθ(x′|x)
• x′ is accepted with the following probability:

Aθ(x′|x) = min
(
1, exp(U(x)− U(x′))gθ(x|x

′)

gθ(x′|x)

)
(7)

Let Tθ(x′|x) = gθ(x′|x)Aθ(x′|x), then the Markov chain has stationary
of pd [6].
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Challenges

Performance depends heavily on the choice of the proposal.

What should we choose? Recall our desiderata:

1. Low bias: The stationary distribution is close to the target
distribution. (always true due to Metropolis-Hastings)

2. Efficiency: {πtθ}∞t=0 converges quickly. (need reasonable
acceptance rate, Tθ not longer differentiable)

3. Low variance: Samples from one chain {xt}∞t=0 should be as
uncorrelated as possible (haven’t discussed low autocorrelation
in MGAN).
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Challenge I: Low acceptance rate

Low acceptance if we use an implicit generative model directly:

• gθ(x′|x) is high
• gθ(x|x′) is low

So gθ(x|x′)/gθ(x′|x) is low.
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Challenge II: Training

Kernel is non-differentiable (cannot optimize like a recurrent net).

Score function gradient estimator (like REINFORCE) also fails!

• High variance in gradient estimates
• Low acceptance rates: MH tend to reject very frequently (99.9%)
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Our Approach

We address the challenges through:

• Introduce a NICE proposal, which avoids low acceptance rates
• Train the NICE proposal (in an adversarial fashion) that is
end-to-end differentiable

• Propose a method that targets low autocorrelation

We call the approach Adversarial NICE Monte Carlo (A-NICE-MC).
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Non-linear Independent Component Estimation (NICE)

Flow models: generative models for x through a bijection f : h→ x

• x ∈ Rn, h ∈ Rn

• h has a fixed prior pH(h)

• pX(x) = pH(f−1(x))
∣∣∣det∂f−1(x)

∂x

∣∣∣−1
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Non-linear Independent Component Estimation (NICE)

Flow models: generative models for x through a bijection f : h→ x

NICE: a volume preserving flow model

• Volume preserving: |det∂f(h)∂h | = |det∂f
−1(x)
∂x | = 1

• Constructed by stacking additive coupling layers, mappings
from (y, z) to (y′, z′)

y′ = y z′ = z+m(y) (8)

where m(·) is a neural network.

With a NICE fθ , it is easy to obtain f−1θ !

28



A NICE Proposal

Our proposal considers a NICE model fθ(x, v) with its inverse f−1θ ,
where v ∼ p(v) is the auxiliary variable. We draw a sample x′ from
the proposal gθ(x′, v′|x, v) using the following procedure:

1. Randomly sample v ∼ p(v) and u ∼ Uniform[0, 1];
2. If u > 0.5, then (x′, v′) = fθ(x, v);
3. If u ≤ 0.5, then (x′, v′) = f−1θ (x, v).

We call this proposal a NICE proposal.
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A NICE Property

Theorem

For any (x, v) and (x′, v′) in their domain, a NICE proposal gθ satisfies

gθ(x′, v′|x, v) = gθ(x, v|x′, v′)

Proof.
For any (x, v) and (x′, v′)

g(x′, v′|x, v) = 1
2 I(x

′, v′ = f(x, v)) + 1
2 I(x

′, v′ = f−1(x, v))

=
1
2 I(x, v = f−1(x′, v′)) + 1

2 I(x, v = f(x′, v′))

= g(x, v|x′, v′) (9)

where I(·) is the indicator function.

30



End-to-end Differentiable Training

Use the MGAN objective with f as transition kernel!

• Ignore f−1 and the MH step during training
• Use them only during MCMC inference.

f

f−1

High “high” acceptance
“low” acceptanceU(x, v)

Low
U(x, v)

p(x, v)

Figure 3: Sampling process of A-NICE-MC. Each step, the proposal executes
fθ or f−1

θ . Outside the high probability regions fθ will guide x towards pd(x),
while MH will tend to reject f−1

θ . Inside high probability regions both
operations will have a reasonable probability of being accepted.
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Pairwise Discriminator

Low variance: Samples from one chain {xt}∞t=0 should be as
uncorrelated as possible (low autocorrelation).

Effective sample size: an important measurement for MCMC
performance

• Let V = Varq[
∑N

i=1 xi/N] be the variance of the mean estimate
through the MCMC samples.

• ESS({xi}N1 ) is the number of independent samples from p(x)
needed in order to achieve the same variance, i.e.
Varp[

∑M
j=1 xj/M] = V
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Pairwise Discriminator

Low variance: Samples from one chain {xt}∞t=0 should be as
uncorrelated as possible (low autocorrelation).

Effective sample size: an important measurement for MCMC
performance

ESS({xi}N1 ) =
N

1+ 2
∑N−1

s=1 (1− s
N )ρs

(10)

where ρs denotes the autocorrelation under q of x at lag s (lower ρs
gives higher ESS).

Unfortunately, MGAN does not optimize for autocorrelation!
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Pairwise Discriminator

A simple trick to train for low autocorrelation / high ESS.

Instead of taking one sample, the discriminator takes a pair of
samples (x1, x2)

Real data : a pair of independent samples from pd
Generated data : a pair of correlated samples from the chain

• x1 ∼ pd, or x1 ∼ πbθ .
• x2 ∼ Tmθ (·|x1)

Match the distribution of correlated generated samples to the
distribution of independent data samples!
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Bootstrap

We need samples from pd for likelihood-free training:

• with (almost) any θ, MCMC with proposal gθ has stationary pd
• this is an unbiased way to obtain samples

Consider the following bootstrap procedure

1. Initialize θ randomly
2. Obtain samples {xi}Ni=1 through MCMC with gθ as proposal
3. Train gθ with pairwise discriminator
4. Go to 2 and repeat.
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Experiments



Settings

Two settings:

• Synthetic 2D energy functions
• Bayesian logistic regression
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Figure 4: Densities of ring, mog2, mog6 and ring5 (from left to right).
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Methods

We consider MCMC on continuous random variables, where U(x) is
differentiable.

• A-NICE-MC: proposal based on NICE
• Hamiltonian Monte Carlo: proposal based on Hamiltonian
dynamics

We consider three measurements:

• ESS (for fixed number of samples from Markov chain)
• ESS per second (the measurement we care about in practice)
• Mean absolute error for estimating statistics.
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Hyperparameters

A-NICE-MC: we use the same hyperparameters for all 2D tasks, and
same for all Bayesian LR tasks.

HMC: we tune for the best hyperparameter

Figure 5: HMC is sensitive to changes in hyperparemeter.
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Synthetic Energy Functions

Around 100x improvement in ESS/s.

Table 1: Performance of MCMC samplers as measured by Effective Sample
Size (ESS). Higher is better (1000 maximum). Averaged over 5 runs under
different initializations.

ESS A-NICE-MC HMC

ring 1000.00 1000.00
mog2 355.39 1.00
mog6 320.03 1.00
ring5 155.57 0.43

ESS/s A-NICE-MC HMC

ring 128205 121212
mog2 50409 78
mog6 40768 39
ring5 19325 29
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Estimating Statistics on ring5

(a) E[
√
x21 + x22] (b) Std[

√
x21 + x22]

Figure 6: Mean absolute error for estimating the statistics in ring5 w.r.t.
simulation length. Averaged over 100 chains.
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Does Training Improve ESS?

Figure 7: ESS with respect to the number of training iterations.

Admittedly, training introduces an additional computational cost
which HMC could utilize to obtain more samples initially (not taking
parameter tuning into account), yet the initial cost can be amortized
thanks to the improved ESS.
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Bayesian Logistic Regression

A more realistic problem where HMC is a very strong baseline.

Querying U(x) or ∇U(x) is equivalent to a pass through the dataset

• HMC uses many ∇U(x) queries for one proposal
• A-NICE-MC only does a forward pass through f (or f−1)

In general, A-NICE-MC proposals are much cheaper to run than HMC
ones!
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Bayesian Logistic Regression

Table 3: ESS and ESS per second for Bayesian logistic regression tasks.

ESS A-NICE-MC HMC

german 926.49 2178.00
heart 1251.16 5000.00

australian 1015.75 1345.82

ESS/s A-NICE-MC HMC

german 1289.03 216.17
heart 3204.00 1005.03

australian 1857.37 289.11

3-9x improvement in terms of ESS/s.
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Summary

We introduce A-NICE-MC, a likelihood-free method for training
flexible MCMC kernels, which

• constructs proposals with NICE, a volume preserving flow
• uses likelihood-free methods for efficient end-to-end training
• matches a target stationary quickly (good burn-in)
• encourages low autocorrelation between samples (good mixing)
• achieves significant empirical (ESS/s) improvements over HMC.

Code https://github.com/ermongroup/a-nice-mc
Paper https://arxiv.org/abs/1706.07561
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Questions?
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Animation

HMC A-NICE-MC


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Existing Problems

• Not training directly on the chain that we care about
• Obtaining samples is much harder in high-dimensional regions
• Exploration (potentially visit more modes) vs exploitation
(training over existing sampled data)

• Training efficiency
• Incorporate ∇U(x) (see [7] for a follow-up on this work)



Gelman’s R hat diagnostic [3]

Evaluates performance across multiple sampled chains.

The perfect value is 1, and 1.1-1.2 would be regarded as too high.

• HMC gives a R hat value of 1.26 in ring5
• A-NICE-MC gives a R hat value of 1.002 in ring5



Architecture for A-NICE-MC

fc 400, relu

fc 400, relu

fc 400, relu

sum

sum

sum

v ∼ N (0, I)x

v′x′

identity

identity

identity

(a) NICE architecture for
energy functions.

fc 400, relu

fc 400, relu

fc 400, relu

sum

sum

sum

v ∼ N (0, I)x

v′x′

identity

identity

identity

fc 400, relu

(b) NICE architecture for
Bayesian logistic regression.



References i

M. Arjovsky, S. Chintala, and L. Bottou.
Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe.
Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877,
2017.
S. P. Brooks and A. Gelman.
General methods for monitoring convergence of iterative
simulations.
Journal of computational and graphical statistics, 7(4):434–455,
1998.



References ii

A. E. Gelfand and A. F. Smith.
Sampling-based approaches to calculating marginal densities.
Journal of the American statistical association, 85(410):398–409,
1990.
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets.
In Advances in neural information processing systems, pages
2672–2680, 2014.

W. K. Hastings.
Monte carlo sampling methods using markov chains and their
applications.
Biometrika, 57(1):97–109, 1970.



References iii

D. Levy, M. D. Hoffman, and J. Sohl-Dickstein.
Generalizing hamiltonian monte carlo with neural networks.
arXiv preprint arXiv:1711.09268, 2017.

R. M. Neal et al.
Mcmc using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2:113–162, 2011.


	Motivation
	Notations and Problem Setup
	Adversarial Training for Markov Chains
	Adversarial Training for MCMC
	Experiments
	Appendix

	fd@rm@0: 
	fd@rm@1: 


